
The 22
nd

 Annual Undergraduate Research Conference

Wittenberg University

Department of Computer Science

Brian Morrow (s10.bmorrow@wittenberg.edu)

Thomas DeBell (s10.tdebell@wittenberg.edu)

Dr. Steven A. Bogaerts (sbogaerts@wittenberg.edu)

A Genetic Algorithm to Optimize a Connect Four Minimax Player

 Connect Four is a classic game played by many people across the world. We have implemented a

fully functional Connect Four game with a computer player that uses the minimax algorithm to choose its

next move. This algorithm first creates every possible state that can come from the current state within a

definable number of moves, and then scores each state using the concept of an n-sequence. An n-

sequence is a window of four slots with n pieces and (4 – n) blanks. Intuitively, a higher n-sequence

should have a greater effect on the score of a state than a lower n-sequence, but the exact relationship is

unclear. Therefore, we used a genetic algorithm to determine the scoring importance of each n-sequence.

The genetic algorithm sets up a pool of computer players, all with different weights for each n-sequence

evaluation, and plays a round robin tournament, recording wins and losses. At the end of each round

robin, a select number of players with the most wins move on to the next round and are then randomly

mutated and crossed-over to create a new pool of players. Once a select few weights continue to win

over several iterations of the genetic algorithm, we will use these weights to create a highly sophisticated

and difficult-to-beat Connect Four computer player.

Connect Four is a registered trademark of Hasbro, Inc.

Introduction

One question almost every computer user has asked while playing a computer game like

solitaire, Connect Four, or chess is, “How did I just lose to a box of circuits? How did it decide to make

that move with the pawn that led to checkmate?” For our purposes, we decided to attack this question

in the context of the classic Hasbro game Connect Four. In this game, a board has seven columns and six

rows. The goal is for one of the two players to attain a sequence of four of their own pieces in a

horizontal, vertical, or diagonal fashion. The tricky part is that both players are trying to achieve this goal

while simultaneously trying to prevent the other player from doing so. Our goal became creating an

efficient computer player for Connect Four that provides a significant challenge to a human player. A key

concept in designing a computer-simulated player for this game, or any game for that matter, is that it

will not win effectively if it makes each of its moves based on the current state of the game only. It must

look “down the road,” taking into account the fact that the opponent will make the best decision on

his/her next move based on what decision the computer player makes about its own move. This way the

computer player can decide the best move that not only maximizes its chances of winning, but also

minimizes the opponent’s chances. Thus we decided to implement the minimax algorithm.

Algorithms

 For the minimax algorithm to be effective, we first needed to design a way for the computer

player to evaluate a given state of the game board so when it looks “down the road,” it knows whether a

certain move will be advantageous or not. To accomplish this evaluation, we created a function called

evalState that returns a score of a game state based on some particular characteristics. This score would

tell the computer player whether the given state has a positive or negative effect on its chances of

winning. This algorithm is also zero-sum – if the evaluation of a game state by player A results in 100

points, the evaluation of the same state by player B would result in (-100) points.

evalState

Our scoring system first relied only on the concept of a terminal state. This is simply a game state

where the board is full (there are no more moves possible) or where one of the players has completed a

sequence of four consecutive pieces either horizontally, vertically, or diagonally. This required the

minimax algorithm to continue to expand each state down the tree until a terminal state was reached.

However, this is extremely time-inefficient because of the time it would take for every state in the tree to

be expanded until that “game” ended. Therefore, we decided to more comprehensively score a state

based on the pieces already placed rather than based on pieces that can be placed later. Our new scoring

system is based on what we call n-sequences. This is a window of four consecutive spots on the board

where n spots contain the same piece and the remaining spots are open. For example, in the following

game state, there are three different 3-sequences for ‘x’, highlighted in red, green, and blue boxes. The

‘o’ piece also has two 2-sequences, highlighted in brown and gold in the right example only.

_

_

_

_ _ _ x _ _ _ _ _ _ x _ _ _ _ _ _ x _ _ _

o _ _ x _ _ o o _ _ x _ _ o o _ _ x _ _ o

o _ x x x _ o o _ x x x _ o o _ x x x _ o

Similar to the 4-piece sequences found in terminal states, these n-sequences can go horizontally,

vertically, or diagonally. Thus, the following board actually has five 1-sequences for the ‘x’ piece,

highlighted in black boxes:

_ _ _ _ _ _ _

_ _ _ _ _ _ _

_ _ _ _ _ _ _

_ _ _ _ _ _ _

_ _ _ _ _ _ _

_ _ _ x _ _ _

The evalState algorithm first checks if the state it’s evaluating is a terminal state. If it is, this state

is said to be the best (or worst, depending on which player has the winning sequence and for which

player evalState is evaluating) in terms of scoring and the algorithm stops. If a winning sequence does

not exist, evalState scores a state by counting the number of 1-sequences, 2-sequences, and 3-

sequences for each player. To determine these counts, the algorithm loops through each spot on the

game board, starting at the top-left, and checks what n-sequence exists, if any. This process is shown in

the following pseudo-code:

 for each row in the game board:

 for each column in the current row:

 for each four-space window in the right, down,

 up-right, and down-right directions:

 check which n-sequence exists here, if any

 Once these counts are determined, evalState scores a state by subtracting the opponent’s count

from the count of the player of which evalState is evaluating and adding up those values (listed below).

(difference of the number of 1-sequences for player 1 and player 2)

(difference of the number of 2-sequences for player 1 and player 2)

(difference of the number of 3-sequences for player 1 and player 2)

 However, this scoring was ineffective because the weight each n-sequence had on the scoring

was equal. Intuitively, the scoring importance of a 3-sequence should be greater than a 1-sequence

because a 3-sequence only needs one more piece to become a winning 4-sequence. Thus we added a

weight to each of the differences so they can have different effects on the scoring of a state. This was

accomplished by changing the formula to add these three values instead:

(weight of a 1-sequence) * (difference of the number of 1-sequences for player 1 and player 2)

(weight of a 2-sequence) * (difference of the number of 2-sequences for player 1 and player 2)

(weight of a 3-sequence) * (difference of the number of 3-sequences for player 1 and player 2)

With our scoring algorithm in place, it was time to implement the minimax algorithm.

Minimax Algorithm

At its core, the minimax algorithm can be implemented in any one-on-one strategic game

situation. Integral to the algorithm is the ability to maximize your chances for success while minimizing

the opponent's opportunities to succeed. The diagram below illustrates the first step in the algorithm.

We are assuming it is a game between two players, Player X and Player Y, and that it is Player X’s turn.

The algorithm starts by taking in the current state of the Connect Four board. From there, it

expands out the next seven possible states, each child of the current state corresponding to Player X

making a move into that column of the Connect Four board. Then, each node in Level 1is traversed, and

each one has seven children generated corresponding to Player Y’s seven possible moves. Thus Level 2

will contain 49 nodes, because from the initial current state, Player X has seven possible moves, and then

Player Y has 49 possible moves. This continues so that at any level of the tree the maximum number of

nodes will be 7
(current-depth-1)

. The algorithm runs in this manner with the alternating levels representing

the alternating players and will end at either a specified search depth or if a board becomes a terminal

state.

Once this terminal state or set depth is reached, the algorithm will then begin to traverse

upwards through the tree, running our evalState function on each node in order to obtain a score.

Assuming we are looking at the game from Player X’s perspective, at each level which represents Player

Y’s choices of moves such as Level 2 above, the algorithm will pick the choice with the lowest score. At

each level which corresponds to Player X, we want to pick the best move and maximize our score, so the

process picks the move which evalState rates as the best, meaning it has the maximum score of the

group of seven choices. Thus, every time our computer player needs to decide where to place a piece,

this algorithm simulates many future moves and picks the move that, based on our scoring gives Player X

the highest chance of winning and Player Y the lowest chance of winning.

Genetic Algorithm

Recall that evalState scores a state by counting and weighing different n-sequences for each

piece. We needed weights for each n-sequence, so instead of using our intuition or simply guessing, we

decided to implement a genetic algorithm to determine an ideal set of weights. In order to do this, we

first had to come up with a way to represent an individual player and also a way to give that player

different characteristics than another computerized player. Then, we had to devise a method which

would be able to pit these different players against each other, and pick winners based on a scoring

system.

A ‘Player’

In order to accurately score a board, we decided that a ‘player’ would consist of a list of three

values or weights, such as [1,2,3]. This constituted an individual player with specific characteristics. As

mentioned before in the discussion of evalState, we put importance on 1-, 2-, and 3-sequence windows

that occurred on the playing board. In order to make different competitors, we decide to create a list of

weights to represent a player as stated above, with each weight corresponding to a 1-, 2-, or 3-sequence

for the current player. So for the above player, our evalState will now use the values [1,2,3] to score a

board. This list represents the weights evalState will use for each n-sequence, so in this example, the

weight for a 1-sequence is 1, the weight for a 2-sequence is 2, and the weight for a 3-sequence is 3.

These values weigh the scores of a sequence and give more power to different sequences depending on

the player.

Once the basic player definition was put into place, we had to create ways to manipulate those

players, in order to diversify our search for the best set of weights we could find. To do so, we used

crossovers and mutations on these objects. A cross over is a method which takes two of the players and

switches some of their values. A cross-over would then occur as follows:

A mutation is a method which will pick one of the three weights for the player and swap it out

with a random number. This would look as follows:

After this coding was completed, we had our players defined as well as our procedures to ensure

the diversity of our weights. It was time to create the framework to play against one another.

Implementation

In its definition, a genetic algorithm is a search technique used to find solutions to an

optimization or search problem. For us, it was all about optimizing our weights to get the most

competitive computer player because the player with the best weights would then make the best moves

and be the most challenging for other players. Our genetic algorithm generates several random players

as discussed above, where the weights for each player are random numbers between 0 and 99. Once

the players are generated, every player plays every other player. We then take the top winners and run

the algorithm again with additional players; however, these players are not randomly generated.

Instead, a number of new players are created using mutations and crossovers of the winning players.

Thus, we have a new list of players of the same number as the previous round, with the hope that after

many rounds the best players will begin to rise to the top and continuously win. The pseudo code is as

follows:

GeneticAlgorithm(numRounds):

Input: The number of rounds you wish to simulate

Output: After each round, the top four players are saved and passed

to the next round. This continues until the round limit is reached,

and the final list of four winners from all the rounds is returned.

playersList = [] (empty list to be filled with “players”)

for I in range Number_of_PLAYERS:

 playerXWeightList = [] (an instance of an individual player)

 on first run only :

 generate three random numbers between 0 and 99

append to playerXWeightList

 append playerXWeightList to playerList

 any other run:

 mutate or crossover some of the previous rounds’ winning

 players to create a new list based on and including previous

 winners

 for each player in playersList:

 play against every other player, recording a win as 1

 and a loss as -1 (round robin tournament)

 pick top n scores to move on, pass them to the next round

Once a select few players continue to win round after round, a threshold test is performed to

determine if the genetic algorithm can stop. This test looks at each of the sequence weights of each of

the winners separately and determines if they are within a threshold of each other. In other words, if the

spreads of the weights of each sequence is less than the threshold, the algorithm stops. The spread is

calculated by taking the difference of the maximum and the minimum of the weights for each sequence.

The genetic algorithm can also stop after a specified number of rounds. The following is an example run

of the genetic algorithm through one round with only two players:

 Create two players with random weights:

 Player 1: [3,52,84] Player 2: [52,34,47]

 Play a round robin tournament:

 Player 1 vs. Player 2 (Player 1 goes first)

 Results in a win for Player 1

 Player 2 vs. Player 1 (Player 2 goes first)

 Results in a win for Player 1

 Now Player 1 has a score of 2 (2 wins)

 And Player 2 has a score of -2 (2 losses)

 Player 1 will move on to the next round

 Player 1 is mutated in the 2-seq slot to

 create a new Player 2: [3,83,84]

 The algorithm continues from here with these two players

Experimentation

 Once we had put into place all the code and had tested it to validate its correctness, it was now

time to begin running tests in order to create the best Connect Four player possible given our

constraints. When we decided to use a weighting system to create a more powerful computer player,

our basic assumption was that a longer sequence would be more important, and thus should receive a

higher weight. In the end, our hope was to identify a set of weights that, based upon our testing

constraints and our evalState, gives us the most powerful computer player. To see if this intuition is true,

we began running a series of different tests.

Setup

 The first step in verifying our guess at a weighting system was to setup a series of experiments

that would show us the differing behaviors of our computer player based on different factors. One

distinction between tests was the number of rounds for which we would allow a simulation to run. Since

our weights could range anywhere from 0-99, we assumed that the longer we allowed the simulation to

run, the closer to the actual “best weights” we could get. The second factor we took into account was

how far down the tree the minimax function was looking. For all experiments listed in this paper, the

results are from a minimax function that searched to a depth of three; this means it looked three moves

into the future in order to determine its best move. Once we began to test a depth of four, our hardware

constraints became evident as the tests took far too long for us to run and obtain proper data. Once we

had all this in place, we began running two identical sets of tests: two sets of 50-round simulations as

well as two sets of 100-round simulations. At this point we had multiple valid data sets and the results

were beginning to look like what we were expecting, but it led us to wonder if increasing the amount of

rounds would help decrease our deviations. Thus, we began running two more sets of tests: one set to

attempt to run for 200 rounds, and one set to run for 300 rounds.

To Summarize, we ran the following tests:

A) Search Depth of 3, 50 rounds

B) Search Depth of 3, 100 rounds

C) Search depth of 3, 200 rounds

D) Search depth of 3, 300 rounds

Tests A and B were run four times, with tests C and D run twice each.

Results

 First, we calculated the averages and standard deviations based on the number of rounds.

Number of

Rounds

1-seq Weight

Average

1-seq Weight

Standard

Deviation

2-seq Weight 2-seq Weight

Standard

Deviation

3-seq Weight 3-seq Weight

Standard

Deviation

50 6.7 4.53 30.5 22.5 78.125 22.9

100 5.125 5.7 24.25 11.7 78.875 27.45

200 6 1 18 1.5 55.5 2.8

300 7 1.54 19.5 1.7 43.5 1.73

 Then we calculated the ratios of 1-seq weights to 2-seq weights, and 1-seq weights to 3-seq

weights. Here are the results:

Number of Rounds (2-seq weight)/(1-seq weight) (3-seq weight)/(1-seq weight)

50 4.5 11.6

100 4.7 15

200 3 9.25

300 2.8 6.21

Analysis

Now that we had collected all our data, we began to see some interesting trends appearing. In

the beginning of our testing, we felt that if we increased the number of rounds in the simulation, the

deviation would shrink considerably as the number of rounds in the trials was increased. This is due to

the fact that to start we are using random number generation between 0 and 99 for the player’s weights.

The high values of these standard deviations in the 50- and 100-round trials led us to believe that we had

not run our tests long enough to get an accurate set of weights for the “best player.” Also, in looking at

our ratio’s in comparison, there was still a large difference in the (3-seq weight)/(1-seq weight) values for

50 and 100 rounds.

This led us into our next round of testing, which would involve increasing the number of rounds

in the simulation. We felt that this would allow more weights to be tested and allow the best and most

accurate weights to rise to the top, hopefully with a much lower deviation. As you can see from the

results above, our expectations were correct. For both of the latter tests, all of our deviations were

under 3, with only one being over 1.75. This showed that we had eliminated the outliers and were very

close to the best set of possible weights. Without running this test exhaustively however, we will never

reach the exact number of that best set. However, based on the ratios we received and the averages we

calculated, the best relationship between weights is approximately x, 3*x for a 2-seq weight, and 6*x for

a 3-seq weight where x is any value chosen for a 1-seq weight.

Thus we have found that in Connect Four the number of pieces in a sequence does determine its

importance in scoring a state and it is an increasing relationship. As the number of pieces in the

sequence increases, so does the importance of that sequence to a player’s chance of winning, and thus

our computer player’s decision on where to move next. Our data gave us our best possible player based

on our tests and using our evaluation function, along with following our time and hardware constraints.

This player has a set of weights that correspond to a ratio of 1-3-6 for a one, two, and three sequence

weight, respectively.

Future Possibilities

 There are many ways one could go with this algorithm. For example, one with a lot of experience

or knowledge in the game of Connect Four can implement some strategies that are used by Connect 4

players. Instead of just choosing places where the player can win, it would deliberately choose certain

places according to some strategy in order to give itself a greater chance of winning. For example, it

could intentionally set up a situation where the other player, no matter where they choose to place a

piece, will lose in the following turn. An example of this is shown below:

_ _ _ _ _ _ _

_ _ _ _ _ _ _

_ _ _ _ _ _ _

_ _ _ _ _ _ _

_ _ _ o o _ _

_ _ x x x _ _

 The ‘x’ player has two 3-sequences in this case. If ‘o’ blocks the win on the left, ‘x’ can simply

place a piece on the other side. If ‘o’ blocks the win on the right, ‘x’ can simply place a piece on the left.

_ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ o o _ _ _ _ _ o o _ _

_ o x x x x _ _ x x x x o _

 The minimax algorithm occasionally accomplishes this through its evaluation of future states, but

not intentionally (other than in its desire to win). Other ways to evaluate the score of a state could also

be developed. In order for the minimax algorithm to evaluate states further down the tree of expanded

states, efficiency would have to be greatly increased. This can be accomplished a few ways - for example,

our implementation could be translated into another language that supports multi-threading in order to

speed up the minimax algorithm's expansion and evaluation of future game states. Different threads

could simultaneously evaluate states in different branches. With seven threads, the minimax algorithm

could evaluate each of the seven branches of expanded states nearly simultaneously. Our minimax

player could also be used in real-world applications; if someone was developing a full Connect 4

computer game, they would most likely prefer to work on the cosmetics and functionality of the game

rather than worry about what their computer player will do to win. Along those same lines, a difficulty

modifier could also be implemented by using less successful weights, not looking “down the road” as far,

or by scoring states with fewer tests.

Conclusion

After the hours of experimentation, our genetic algorithm was successful in finding an optimal

set of weights for our computer-simulated Connect Four player. With these weights, the computer can

use a concrete scoring system to determine how well it is doing given any state of the game. By “looking

down the road” and evaluating possible future states with its implementation of the minimax algorithm,

our computer player can make intelligent and challenging decisions every time it places a piece on the

board. This makes our minimax computer player a very challenging and formidable opponent for any

player of our Connect Four game.

Acknowledgments

 Thanks to our project advisor, Dr. Steven Bogaerts, Assistant Professor of Computer Science at

Wittenberg University.

