
Describing a Combinatorics Problem with a System of
Polynomial Equations

Marshall Zarecky Wittenberg University
Springfield, Ohio

s09.mzarecky@wittenberg.edu

Adam Parker Wittenberg University
Springfield, Ohio

aparker@wittenberg.edu

ABSTRACT
This paper provides a method to describe and solve a com-
binatorics problem using systems of polynomial equations.
These systems, however, are too large to be solved by hand.
The goal of this paper is to give the reader two techniques to
solve these systems. The first technique uses Buchberger’s
Algorithm to find a Gröbner basis for the system. The sec-
ond technique addresses and solves the problem if finding a
Gröbner basis is computationally difficult.

1. INTRODUCTION
In 1970, Milton Bradley(c) created a game played on a
hexagon-shaped grid called ‘Drive Ya Nuts.’ The game con-
sists of seven hexagonal nuts, each having a unique arrange-
ment of the numbers one through six on each side. The
object of the game is to arrange the nuts on the grid in such
a way that adjacent sides of the nuts have matching num-
bers. Up to rotation of the entire game board, there are
possible 235, 146, 240 ways to place the nuts. Suppose that
we were able to go through every combination and check
if it were a solution every second, then it would take 7.46
years to find all solutions. In this paper we will determine
how many of these combinations are solutions. Disregard-

ing a brute force attempt to find all solutions, we begin by
describing this game by a system of polynomial equations.

2. DESCRIBING THE GAME

Figure 1: Nut B0 in initial rotation state

2.1 Notation and Description
Each nut has a particular ordering of one through six. I will
refer to the ordering of a specific nut by a 6-tuple, headed
by any number with subsequent numbers listed clockwise.
The first entry of the 6-tuple will correspond to number
located on the north side of the nut, which we call position
0. The second entry will correspond to the number located
on the east-north-east side of the nut, which we call position
1. Following entries will correspond to the next side moving
clockwise up to position 5 corresponding to west-north-west.

If the zero entry of the 6-tuple is 1, then we shall call that
the initial rotation state of the nut. For instance, in Figure
1, the second entry of B0 is 2 and the fourth entry is 5. In
a randomly assigned order, here are the definitions for each
nut in the initial rotation state: B0 = (1, 6, 2, 4, 5, 3), B1 =
(1, 4, 6, 2, 3, 5), B2 = (1, 6, 5, 3, 2, 4), B3 = (1, 4, 3, 6, 5, 2),
B4 = (1, 2, 3, 4, 5, 6), B5 = (1, 6, 4, 2, 5, 3), B6 = (1, 6, 5, 4, 3,
2).

Figure 2: Nut B0 rotated 4 times

Each nut also has six distinct rotational states. A rotation
of one rotates the nut sixty degrees clockwise. A rotation
of two rotates the nut 120 degrees clockwise. Up to n = 5
rotations, a rotation of n rotates the nut 60n degrees. For

example, B0 rotated four times would look like Figure 2.
The corresponding 6-tuple for B0 rotated four times would
be (2, 4, 5, 3, 1, 6).

Figure 3: Location of gi on the grid

To describe the location of a nut on the game board, each
location gi is given a value. Position of the nuts placed on
the grid is denoted by a number 0 through 6. Nut position
0 is in the center of the grid. Nut position 1 is north on
the grid. Nut position 2 is east north-east on the grid and
similarly up to nut position 6 located north west-north on
the grid.

We say that pi = m signifies that Bi is rotated 60 degrees
m times and gj = n signifies that Bn is placed on the grid
at position j. An instance of this is shown by if g4 = 3 and
p3 = 1, then B3 rotated once would be placed at position 4,
corresponding to 3 in Figure 3. These variables will be used
again in §3.

3. DESCRIBING THE NUTS
3.1 The Rotation Equations
Our goal is to define a function F (g, p, x) that describes
the possible states of the nuts in the game. In particular,
F (g, p, x) gives the value at any Bg under any rotation p
at position x. In the following sections, we will be creating
smaller functions and combining them to create the final
F (g, p, x) function.

We create functions fi,j(x), where i denotes nut Bi and
j denotes the jth rotation of Bi. We start by describing
f0,0(x) that describes B0 under the initial rotation; in other
words, if we plug in a position x ∈ {0, 1, 2, 3, 4, 5}, f0,0(x)
will satisfy the following conditions: f0,0(0) = 1, f0,0(1) =
6, f0,0(2) = 2, f0,0(3) = 4, f0,0(4) = 5, and f0,0(5) = 3.

Consider f0,0(x) defined by

f0,0(x) =
5∑

i=0

cix(x− 1) . . . (̂x− i) . . . (x− 5)

Since each term of f0,0(x) is zero except cix · · · (̂x− i) · · ·
(x−5), the value of f0,0(x) can be controlled by the value of
ci. From our initial conditions, our final function is f0,0(x) =
− 1

120
(x−1)(x−2)(x−3)(x−4)(x−5)+ 1

4
x(x−2)(x−3)(x−

4)(x− 5)− 1
6
x(x− 1)(x− 3)(x− 4)(x− 5) + 1

3
x(x− 1)(x−

2)(x−4)(x−5)− 5
24

x(x−1)(x−2)(x−3)(x−5) + 3
120

x(x−
1)(x − 2)(x − 3)(x − 4), or expanded becomes f0,0(x) =

1 + 127x
5
− 100x2

3
+ 127x3

8
− 19x4

6
+ 9x5

40
. Notice how Figure 4

satisfies our conditions.

Figure 4: f0,0(x) on [0, 5]

Now we must repeat the process for f0,1(x) using the next
clockwise rotation of nut B0, which corresponds to (3, 1, 6, 2,
4, 5). Since finding the ci values can be long and tedious
work, we streamline the method using matrices to find our
expanded polynomials. Consider the function f0,1(x) =
a0x

5 + a1x
4 + a2x

3 + a3x
2 + a4x + a5. We want to find

values of a0, a1, a2, a3, a4, a5 such that we obtain our de-
sired function. However, this is just a system of 6 equa-
tions and 6 unknowns. f0,1(0) gives us a5 = 3, f0,1(1)
gives us a0 + a1 + a2 + a3 + a4 + a5 = 1, f0,1(2) gives us
32a0 + 16a1 + 8a2 + 4a3 + 2a4 + a5 = 6, and so on. Setting
up the corresponding matrix equation, we get:

0 0 0 0 0 1
1 1 1 1 1 1
32 16 8 4 2 1
243 81 27 9 3 1
1024 256 64 16 4 1
3125 625 125 25 5 1

 ·


a0

a1

a2

a3

a4

a5

 =


3
1
6
2
4
5


By multiplying on the left by the inverse of the coefficient
matrix, we arrive at the solution:

−1
120

1
24

−1
12

1
12

−1
24

1
120

1
8

−7
12

13
12

−1 11
24

−1
12

−17
24

71
24

−59
12

49
12

−41
24

7
24

15
8

−77
12

107
12

−13
2

61
24

−5
12

−137
60

5 −5 10
3

−5
4

1
5

1 0 0 0 0 0


·



3

1

6

2

4

5


=



−53
120

137
24

−207
8

1147
24

−1751
60

3



Therefore f0,1(x) = − 53
120

x5 + 137
24

x4 − 207
8

x3 + 1147
24

x2 −
1751
60

x + 3. Repeat this process to find all fi,j(x) for i ∈
{0, 1, 2, 3, 4, 5, 6}, j ∈ {0, 1, 2, 3, 4, 5}.

3.2 Combining the Rotation Equations
Next we create a function hk(p, x) that gives the correspond-
ing value at the xth position at the pth rotation state of Bk.

Figure 5: f0,1(x) on [0, 5]

For instance, h4(2, 5) = 4 because B4 = (1, 2, 3, 4, 5, 6), ro-
tated twice becomes (5, 6, 1, 2, 3, 4), and the value at the fifth
position is 4. Another example is h6(4, 0) = 5, where B6 =
(1, 6, 5, 4, 3, 2), rotated four times becomes (5, 4, 3, 2, 1, 6),
and the value at position zero is 5. Consider

hk(p, x) =

5∑
i=0

[difk,i(x)]p(p− 1) . . . (̂p− i) . . . (p− 5)

where di is a constant. All that is left is to find corresponding
di values such that our function represents the entire nut.

If we let p = 0, then h0(0, x) = [d0f0,0(x)](0− 1)(0− 2)(0−
3)(0−4)(0−5). Because we do not want to change the value
of f0,0(x) by a constant multiple, we must solve the equation
d0(0−1)(0−2)(0−3)(0−4)(0−5) = 1. In the case of h0(0, x),
d0 = −1

120
. In general, we do not want to change the value of

any fj,i, so we set dii(i − 1) . . . (̂i− i) . . . (i − 5) = 1. Thus,
di = 1

i···(i−(i−1))(i−(i+1))···(i−5)
.

Expanded, our polynomial equation for h0 is h0(p, x) =

1 − p
4

+ 91p2

24
− 7p3

4
+ 5p4

24
+ 127x

5
− 120237px

400
+ 589913p2x

1440
−

32467p3x
160

+ 61123p4x
1440

− 7633p5x
2400

− 100x2

3
+ 761957px2

1440
− 435481p2x2

576
+

220559p3x2

576
− 46643p4x2

576
+ 17551p5x2

2880
+ 127x3

8
− 24401px3

80
+

129193p2x3

288
− 133019p3x3

576
+ 14213p4x3

288
− 10769p5x3

2880
− 19x4

6
+

101947px4

1440
− 61223p2x4

576
+ 31909p3x4

576
− 6877p4x4

576
+ 2621p5x4

2880
+

9x5

40
− 3427px5

600
+ 6271p2x5

720
− 13199p3x5

2880
+ 179p4x5

180
− 1097p5x5

14400
.

We again can verify our equation with several inputs, such
as h0(1, 3) = 2, h0(5, 2) = 4, h0(2, 4) = 2, and h0(4, 5) = 6.
In a similar way, we construct all hk(p, x).

3.3 The Final Equation
Our final task is to combine the h0, h1, . . . , h6 polynomi-
als into one massive polynomial F (g, p, x) that gives us the
value on nut Bg (defined in Section 2.1) at the pth rotation
state at the xth position. Ideally, like the examples in §2.3,
F (4, 2, 5) = 4 because the fifth position on B4 rotated twice
is 4 and F (6, 4, 0) = 5 because the zeroth position on B6

rotated four times is 5. In a similar fashion to our previous
methods, consider the polynomial

F (g, p, x) =

6∑
i=0

[bihi(p, x)]g(g − 1) . . . (̂g − i) . . . (g − 6)

where bi is a constant. Again, we only need to choose the
correct bi value to get the polynomial we desire. Using meth-

ods similar to finding the di of the h(p, x), we can easily find
the values of the bi. The final expanded F (g, p, x) function is
listed in the appendix; it has degree 16 and 245 monomials.

4. THE SOLUTION
4.1 The Adjacency System
Now that we have described all of the nuts by one large
polynomial, we are able to describe how adjacency acts in
this system of polynomials. We can encode the fact that
the value of adjacent nuts are equal by setting some of these
F (g, p, x) polynomials with different g, p, and x values equal
to each other.

First, in order to remove rotational redundancies from the
game, we set the innermost nut, defined to be g0, to always
have initial rotation (p0 = 0) so we do not get similar solu-
tions based on rotations of g0. Since g1 is directly north of
g0, we must set the rotation state of g1 to p1 = 3 so that the
ones will be adjacent. Furthermore, since p1 is always 3, we
do not need to have p1 in the final system of equations. The
equation describing this is F (g0, 0, 0)− F (g1, 3, 3) = 0. Ge-
ometrically, this equation ensures that the north edge (posi-
tion 0) of the nut at location g0 with initial rotation and the
south edge (position 3) of location g1 with third rotation,
and F (g0, 0, 0) − F (g1, 3, 3) = 0 ensures that the two edges
have the same value. Of course this value will be 1.

Next, considering nut g2, the equations F (g0, 0, 1)−F (g2, p2,
4) = 0 and F (g1, 3, 2) − F (g2, p2, 5) = 0 are added into the
system. Geometrically, g0 with initial rotation at position
1 shares common value with g2 with rotation p2 at position
4. Similarly, g1 with rotation 3 at position 2 shares common
value with g2 with rotation p2 at position 5. Sequentially
adding all of the nuts, we arrive at twelve distinct equations
describing adjacency.

4.2 Domain and Uniqueness of Solution
We must take into consideration that the adjacency solutions
must have integer values gi ∈ [0, 6] and pj ∈ [0, 5]. Therefore,
we must add in the following equations into our system to
ensure integer solutions: g0(g0−1)(g0−2)(g0−3)(g0−4)(g0−
5)(g0 − 6) = 0, . . . , g6(g6 − 1)(g6 − 2)(g6 − 3)(g6 − 4)(g6 −
5)(g6 − 6) = 0, p2(p2 − 1)(p2 − 2)(p2 − 3)(p2 − 4)(p2 − 5) =
0, . . . , p5(p5 − 1)(p5 − 2)(p5 − 3)(p5 − 4)(p5 − 5) = 0. The gi

equations will only zero out for gi ∈ {0, 1, 2, 3, 4, 5, 6} and
the pj equations will only zero out for pj ∈ {0, 1, 2, 3, 4, 5},
hence forcing the solutions to these equations to be in our
restricted integer domain.

Also, since each nut can be used only once, we must ensure
that each gi is unique. The following equation will handle
that: (g0−g1)(g0−g2)(g0−g3)(g0−g4)(g0−g5)(g0−g6)(g1−
g2)(g1− g3)(g1− g4)(g1− g5)(g1− g6)(g2− g3)(g2− g4)(g2−
g5)(g2− g6)(g3− g4)(g3− g5)(g3− g6)(g4− g5)(g4− g6)(g5−
g6)a−1 = 0, where a is another variable. Notice that if gi−
gj = 0 for some i 6= j, then −1 = 0. Thus a ensures that the
product of all the gi− gj is 1 For efficiency, we break up the
uniqueness equation into several, smaller similar equations:
(g0 − g1)(g0 − g2)(g0 − g3)(g0 − g4)(g0 − g5)(g0 − g6)a −
1 = 0, (g1 − g2)(g1 − g3)(g1 − g4)(g1 − g5)(g1 − g6)b − 1 =
0, (g2 − g3)(g2 − g4)(g2 − g5)(g2 − g6)(g3 − g4)c− 1 = 0, and
(g3− g5)(g3− g6)(g4− g5)(g4− g6)(g5− g6)d− 1 = 0, where
a, b, c, and d are variables.

4.3 Finding a Solution
We have 27 equations of degree 16 or less in 16 variables
with rational coefficients and we want to find a solution
to system. If we multiply an equation in the system by
some K ∈ R[g0, g1, g2, g3, g4, g5, g6, p2, p3, p4, p5, a, b, c, d] or
add any two of the equations in the system together, the
solution will remain unchanged. Thus it is natural to con-
sider the ideal generated by the adjacency equations, domain
equations, and uniqueness equations. We will call the ideal
generated by our system < I > .

The variety of < I >, V (< I >), corresponds to {(g0, g1, g2,
g3, g4, g5, g6, p2, p3, p4, p5, a, b, c, d) ∈ R16 : ri(g0, g1, g2, g3,
g4, g5, g6, p2, p3, p4, p5, a, b, c, d) = 0∀ri ∈ I}. In other words,
this is solution set of our system of equations. But < I >
is too complicated to analyze and find all the zeros, so
we would like to find another generating set of equations
G ⊂ R[g0, g1, g2, g3, g4, g5, g6, p2, p3, p4, p5, a, b, c, d] that gen-
erates < I > . Proposition 4 on page 32 of [2] guarantees that
if < I >=< G >, then V (< I >) = V (< G >). The converse
of the statement is not true because V (< x >) = V (< x2 >)
which is just x = 0, but < x >6=< x2 > .

A Gröbner basis is ideal for this situation because Gröbner
bases are a nice generating set of an ideal. Most of the
time we can read off or easily determine the variety from
Gröbner basis. For example, find all points in V (K) where
K =< x2 + y2 + z2 − 1, x2 + z2 − y, x− z >⊂ C[x, y, z]. The
solution is not obvious, but if we take the Gröbner basis
of K with respect to lexicographic monomial order, we get
< x− z,−y + 2z2, z4 + 1

2
z2 − 1

4
> . One of the polynomials

of the Gröbner basis is solely in z, and solving for z we get

z = ± 1
2

√
±
√

5− 1. This gives us four values for z, and by
substitution, we can obtain the rest of the points in V (K).
For more background on Gröbner bases, consult the text [2].

There exists an algorithm for converting a basis into a Gröb-
ner basis for an ideal. By means of a computer algebra sys-
tem, we attempted to calculate the Gröbner basis, G, of I.
Due to the lack of high-powered computing, we were unable
to do so. We can, however, compute V (< I >) and we will
do so in section 4.4. Using V (< I >), we can easily find a
Gröbner basis for the ideal generated by V (< I >). Finally,
we will give the relationship of this ideal to our original one.

4.4 Calculating V(<I>)
The following theorem gives all solutions to ‘Drive Ya Nuts.’

Theorem 4.1. The solutions to ‘Drive Ya Nuts’ are V (<
I >) = {g0 = 0, g1 = 1, g2 = 2, p2 = 3, g3 = 3, p3 = 0, g4 =
4, p4 = 3, g5 = 5, p5 = 3, g6 = 6, p6 = 4, a = 1

720
, b = −1

120
, c =

−1
24

, d = −1
12
}.

Proof. We will be using Mathematica’s Reduce function
to ‘build-up’ a solution from partial solutions. The way that
Reduce works is that Reduce[expr,vars] reduces the state-
ment expr by solving equations or inequalities for vars and
eliminating quantifiers. Starting with Reduce[{g_0(g_0-

1)(g_0-2)(g_0-3)(g_0-4)(g_0-5)(g_0-6) = 0, g_1(g_1-

1)(g_1-2)(g_1-3)(g_1-4)(g_1-5)(g_1-6) = 0, g_2(g_2-

1)(g_2-2)(g_2-3)(g_2-4)(g_2-5)(g_2-6) = 0, p_2(p_2-

1)(p_2-2)(p_2-3)(p_2-4)(p_2-5) = 0, g_0 6= g_1, g_0

6= g_2, g_1 6= g_2, F(g_0,0,0)-F(g_1,3,3) = 0, F(g_0,

0,1)-F(g_2,p_2,4) = 0, F(g_1,3,2) - F(g_2,p_2,5) =

0}, {g_0,g_1,g_2,p_2}, Reduce will give us a partial solu-
tion set of the first three nuts, which is {(g_0==0 && g_1==1

&& g_2==2 && p_2==3) || (g_0==0 && g_1==1 && g_2==3

&& p_2==1)||(g_0==0 && g_1==1 && g_2==6 && p_2==3)

||(g_0==0 && g_1==2 && g_2==5 && p_2==3)||(g_0==0

&& g_1==3 && g_2==1 && p_2==2)||(g_0==0 && g_1==6

&& g_2==1 && p_2==2)||(g_0==1 && g_1==0 && g_2==3

&& p_2==3)||(g_0==1 && g_1==0 && g_2==6 && p_2==1)

||(g_0==1 && g_1==3 && g_2==5 && p_2==2)||...||(g_0

==6 && g_1==3 && g_2==0 && p_2==3)||(g_0==6 && g_1

==3 && g_2==1 && p_2==2)}.

We will proceed to use Reduce again including the partial
solution set, g3 and p3 domain restrictions, F (g3, p3, 5) −
F (g0, 0, 2), F (g3, p3, 0) − F (g2, p2, 3), and the nut inequali-
ties. By repeating this process, Reduce will narrow the pos-
sible solutions until all combinations have been exhausted,
leaving only a set of full solutions. The final set of solutions
is g_0==0 && g_1==1 && g_2==2 && p_2==3 && g_3==3 &&

p_3==0 && g_4==4 && p_4==3 && g_5==5 && p_5==3 &&

g_6==6 && p_6==4. However, this method models a ‘brute
force’ attempt to find all solutions. Reduce starts with the
three nuts and calculates a set of partial solutions. Then the
next iteration of Reduce takes another nut and calculates
from next set of partial solutions using the partial solutions
from the previous iteration. Reduce basically narrows down
the initial 235, 146, 240 ways to place the nuts to 40 partial
solutions, then to 37 partial solutions, then to 23, then 4,
and finally one entire solution to the puzzle.

Figure 6: The only solution to Drive Ya Nuts

Now we define the ideal of the functions that vanish on our
variety. Clearly, I(V (< I >)) =< g0, g1 − 1, g2 − 2, g3 −
3, g4 − 4, g5 − 5, g6 − 6, p2 − 3, p3, p4 − 3, p5 − 3, p6 − 4, a −
1

720
, b + 1

120
, c + 1

24
, d + 1

12
>, contains I. The basis here is a

Gröbner basis.

Theorem 4.2. {g0, g1−1, g2−2, g3−3, g4−4, g5−5, g6−
6, p2−3, p3, p4−3, p5−3, p6−4, a− 1

720
, b+ 1

120
, c+ 1

24
, d+ 1

12
}

is a Gröbner basis for I(V (I)).

Proof. Using a computer algebra system, the Gröbner
basis of I(V (I)) is < 1+12d, 1+24c, 1+120b,−1+720a,−4+
p6,−3+p5,−3+p4, p3,−3+p2,−6+g6,−5+g5,−4+g4,−3+
g3,−2 + g2,−1 + g1, g0 > .

Our goal was to find a Gröbner basis for I, but at best we
have found a Gröbner basis that contains I and has the same
variety.

Theorem 4.3. < I >⊂< 1 + 12d, 1 + 24c, 1 + 120b,−1 +
720a,−4 + p6,−3 + p5,−3 + p4, p3,−3 + p2,−6 + g6,−5 +
g5,−4 + g4,−3 + g3,−2 + g2,−1 + g1, g0 >

Proof. The proof follows directly from Lemma 7 on page
34 of [2].

We hope in the future to be able to show that the above is
an equality and show that < 1 + 12d, 1 + 24c, 1 + 120b,−1 +
720a,−4 + p6,−3 + p5,−3 + p4, p3,−3 + p2,−6 + g6,−5 +
g5,−4+g4,−3+g3,−2+g2,−1+g1, g0 > is a Gröbner basis
for our ideal.

5. SOLVING CIPRA’S PROBLEM
One interesting application to this technique of describing a
combinatorics problem as a system of polynomial equations
is Barry Cipra’s Problem featured in [1]. There are sixteen
distinct squares to be arranged on a four by four grid. Each
square contains a distinct combination of a horizontal line
through the center, a vertical line through the center, an up-
right diagonal through the center, and a down-right diagonal
through the center. Each of these squares is to be placed
on the grid, rotations not allowed, such that all horizontal,
diagonal, and vertical lines are unbroken.

Solution redundancy is difficult to avoid in this puzzle be-
cause some of the squares are 90 degree and 180 degree
rotations of other squares. Since some squares have four
distinct rotations, other squares have two distinct rotations,
and three squares do not have distinct rotations, then for
simplicity, we will avoid the usage of rotations in this prob-
lem.

The polynomial for each square would be

hj(x) =

3∑
i=0

cix . . . (̂x− i) . . . (x− 3)

where j is your self-defined square sj and ci controls the
value of hj(x) at your defined position x: 1 (if a line is
there) or 0 (if no line is there). For instance, in Figure 7,
h5(0) = 1, h5(1) = 1, h5(2) = 0, and h5(3) = 0. Thus
h5(x) = −1

6
(x− 1)(x− 2)(x− 3) + 1

2
x(x− 2)(x− 3) + 0x(x−

1)(x− 3) + 0x(x− 1)(x− 2) = 1
3
x3 − 3

2
x2 + 7

6
x + 1.

Adjacency works similarly in Cipra’s Puzzle. Say that we
have created a function F (p, x), where pi = n is our pre-
defined square sn placed at location i on the grid and x
is a boolean value of 1 (if a line is at position x) or 0 (if
no line is at position x) for x ∈ {0, 1, 2, 3}. There are 42
adjacency equations in Cipra’s Puzzle; here are the first

Figure 7: A square in Cipra’s Puzzle

three equations for p0, p1, p4, p5: F (p0, 3) − F (p1, 3) = 0,
F (p0, 1) − F (p4, 1) = 0, and F (p0, 0) − F (p5, 0) = 0. The
equation F (p0, 3) − F (p1, 3) = 0 corresponds to p0 and p1

sharing a horizontal line, F (p0, 1)−F (p4, 1) = 0 corresponds
to p0 and p1 sharing a vertical line, and F (p0, 0)−F (p5, 0) =
0 corresponds to p0 and p1 sharing a diagonal down-right
line.

Figure 8: Locations of the pi

We need to restrict the domain of the pi to {0, 1, . . . , 15}, so
we need equations like p0(p0−1) . . . (p0−14)(p0−15), p1(p1−
1) . . . (p1 − 14)(p1 − 15), . . . , p15(p15 − 1) . . . (p15 − 14)(p15 −
15) to ensure the pi have integer values from 0 to 15. The
squares cannot be used more than once in this puzzle, so
there needs to be equations that ensure that for each pi, pj ,
pi − pj 6= 0 for all i 6= j.

Finally, we create an ideal I generated by the adjacency
equations, the domain restrictions, and the uniqueness equa-
tions and attempt to create a Gröbner basis of I. Cipra’s
Puzzle has 3 non-redundant solutions. Our system will give
these three solutions with different rotations, flipping the
puzzle, and moving rows and columns as distinct solutions.

6. CONCLUSION
Many combinatorics puzzles can be described as a system of
polynomial equations using this method. Solving them, on
the other hand, proves a problem since these systems are of-
ten large, complex, and of multiple variables. We can solve

Figure 9: All of the squares in Cipra’s Puzzle

these systems using ideals, varieties, and Gröbner bases, but
that is dependent on the power of computing available to cal-
culate the Gröbner bases. Lacking high-powered computing,
we still are able to calculate a solution using Mathematica’s
Reduce function iteratively.

7. REFERENCES
[1] B. Cipra. Problem section. Math Horizons, pages

34–35, April 2003.

[2] D. O. David Cox, John Little. Ideals, Varieties, and
Algorithms. Springer Science+Business Media, LLC,
233 Spring Street New York, New York 10013, 2007.

APPENDIX
F (g, p, x) = 1− p

4
− 78433gp

720
+ 1359257g2p

5400
− 543211g3p

2880
+ 542897g4p

8640

− 27697g5p
2880

+ 23779g6p
43200

+ 91p2

24
+ 230633gp2

1440
− 33559g2p2

96
+ 292693g3p2

1152

− 31967g4p2

384
+ 72803g5p2

5760
− 277g6p2

384
− 7p3

4
− 28799gp3

360
+ 704791g2p3

4320
−

66073g3p3

576
+ 63925g4p3

1728
− 1787g5p3

320
+ 2753g6p3

8640
+ 5p4

24
+ 4835gp4

288
−

45817g2p4

1440
+ 24839g3p4

1152
− 7871g4p4

1152
+ 1181g5p4

1152
− 337g6p4

5760
− 913gp5

720
+

48287g2p5

21600
− 233g3p5

160
+ 977g4p5

2160
− 97g5p5

1440
+ 83g6p5

21600
+ 127x

5
−

28079gx
360

+ 922223g2x
21600

+ 30737g3x
2880

− 98947g4x
8640

+ 7151g5x
2880

− 7271g6x
43200

−
120237px

400
+ 79572127gpx

43200
− 4281836687g2px

1296000
+ 187115519g3px

86400
−

6783517g4px
10368

+ 8005631g5px
86400

− 1613687g6px
324000

+ 589913p2x
1440

−
256407851gp2x

86400
+ 983104573g2p2x

172800
− 26769115g3p2x

6912
+ 41522783g4p2x

34560
−

29997763g5p2x
172800

+ 409453g6p2x
43200

− 32467p3x
160

+ 5683745gp3x
3456

−
840906931g2p3x

259200
+ 154955873g3p3x

69120
− 29148151g4p3x

41472
+ 471781g5p3x

4608
−

5833621g6p3x
1036800

+ 61123p4x
1440

− 6454661gp4x
17280

+ 5168047g2p4x
6912

−
17990137g3p4x

34560
+ 5671097g4p4x

34560
− 165965g5p4x

6912
+ 2861g6p4x

2160
− 7633p5x

2400

+ 2571797gp5x
86400

− 4862633g2p5x
81000

+ 1611151g3p5x
38400

− 2751089g4p5x
207360

+
672757g5p5x

345600
− 558023g6p5x

5184000
− 100x2

3
+ 16397gx2

144
− 42337g2x2

960
−

36887g3x2

1152
+ 8389g4x2

384
− 4937g5x2

1152
+ 529g6x2

1920
+ 761957px2

1440
−

243677999gpx2

86400
+ 813783487g2px2

172800
− 10193801g3px2

3456
+ 14871571g4px2

17280
−

5118853g5px2

43200
+ 1075303g6px2

172800
− 435481p2x2

576
+ 158395439gp2x2

34560
−

345197273g2p2x2

41472
+ 37973983g3p2x2

6912
− 34540639g4p2x2

20736
+

1020637g5p2x2

4320
− 526805g6p2x2

41472
+ 220559p3x2

576
− 17711245gp3x2

6912
+

33521687g2p3x2

6912
− 90604517g3p3x2

27648
+ 27933157g4p3x2

27648
− 445903g5p3x2

3072

+ 72661g6p3x2

9216
− 46643p4x2

576
+ 20269141gp4x2

34560
− 235842911g2p4x2

207360
+

5382593g3p4x2

6912
− 5025221g4p4x2

20736
+ 303031g5p4x2

8640
− 397379g6p4x2

207360
+

17551p5x2

2880
− 8126137gp5x2

172800
+ 3999757g2p5x2

43200
− 196307g3p5x2

3072
+

2765047g4p5x2

138240
− 2010137g5p5x2

691200
+ 36751g6p5x2

230400
+ 127x3

8
−

83129gx3

1440
+ 151709g2x3

8640
+ 3967g3x3

192
− 21485g4x3

1728
+ 6733g5x3

2880
−

79g6x3

540
− 24401px3

80
+ 2623603gpx3

1728
− 623667331g2px3

259200
+ 8372389g3px3

5760
−

1068523g4px3

2592
+ 191647g5px3

3456
− 740449g6px3

259200
+ 129193p2x3

288
−

8575445gp2x3

3456
+ 4966289g2p2x3

1152
− 12762863g3p2x3

4608
+ 11378459g4p2x3

13824
−

1588279g5p2x3

13824
+ 84289g6p2x3

13824
− 133019p3x3

576
+ 48151457gp3x3

34560
−

29255033g2p3x3

11520
+ 46434757g3p3x3

27648
− 4697747g4p3x3

9216
+ 9998867g5p3x3

138240

− 179213g6p3x3

46080
+ 14213p4x3

288
− 5531453gp4x3

17280
+ 3461969g2p4x3

5760
−

620993g3p4x3

1536
+ 1717075g4p4x3

13824
− 1229863g5p4x3

69120
+ 66637g6p4x3

69120
−

10769p5x3

2880
+ 889919gp5x3

34560
− 25556413g2p5x3

518400
+ 4633699g3p5x3

138240
−

860785g4p5x3

82944
+ 68923g5p5x3

46080
− 168883g6p5x3

2073600
− 19x4

6
+ 1801gx4

144
−

11249g2x4

2880
− 4993g3x4

1152
+ 3001g4x4

1152
− 559g5x4

1152
+ 173g6x4

5760
+ 101947px4

1440
−

5847629gpx4

17280
+ 17793377g2px4

34560
− 1303481g3px4

4320
+ 721307g4px4

8640
−

38017g5px4

3456
+ 19247g6px4

34560
− 61223p2x4

576
+ 19188241gp2x4

34560
−

192770711g2p2x4

207360
+ 1007807g3p2x4

1728
− 1764913g4p2x4

10368
+ 809449g5p2x4

34560
−

254729g6p2x4

207360
+ 31909p3x4

576
− 10804819gp3x4

34560
+ 19057151g2p3x4

34560
−

9886411g3p3x4

27648
+ 2957675g4p3x4

27648
− 691583g5p3x4

46080
+ 36847g6p3x4

46080
−

6877p4x4

576
+ 497695gp4x4

6912
− 27223933g2p4x4

207360
+ 150067g3p4x4

1728
−

273305g4p4x4

10368
+ 25855g5p4x4

6912
− 41707g6p4x4

207360
+ 2621p5x4

2880
− 200599gp5x4

34560

+ 62341g2p5x4

5760
− 334171g3p5x4

46080
+ 307153g4p5x4

138240
− 43907g5p5x4

138240
+

475g6p5x4

27648
+ 9x5

40
− 283gx5

288
+ 16189g2x5

43200
+ 389g3x5

1440
− 191g4x5

1080
+

g5x5

30
− 89g6x5

43200
− 3427px5

600
+ 575153gpx5

21600
− 12713507g2px5

324000
+

1937371g3px5

86400
− 157423g4px5

25920
+ 22631g5px5

28800
− 25381g6px5

648000
+ 6271p2x5

720
−

945911gp2x5

21600
+ 4096429g2p2x5

57600
− 604147g3p2x5

13824
+ 867689g4p2x5

69120
−

196423g5p2x5

115200
+ 30581g6p2x5

345600
− 13199p3x5

2880
+ 853889gp3x5

34560
−

21967063g2p3x5

518400
+ 1244263g3p3x5

46080
− 661399g4p3x5

82944
+ 153079g5p3x5

138240
−

121333g6p3x5

2073600
+ 179p4x5

180
− 49249gp4x5

8640
+ 350117g2p4x5

34560
− 456211g3p4x5

69120

+ 136961g4p4x5

69120
− 2141g5p4x5

7680
+ 343g6p4x5

23040
− 1097p5x5

14400
+ 79519gp5x5

172800
−

724163g2p5x5

864000
+ 382987g3p5x5

691200
− 23243g4p5x5

138240
+ 16489g5p5x5

691200
−

4433g6p5x5

3456000

