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Abstract. Crypto1 and Hitag2 are two well-known stream ciphers that
are quite similar in structure. Despite their like-minded designs, they dif-
fer in their resistance to algebraic attacks. Both have been broken using
SAT-solvers, but the fastest published attack against Hitag2 took over 6
hours, while Crypto1 was broken in under a minute. In this paper we ex-
perimentally examine how register taps and non-linear functions (NLFs)
affect the security of stream ciphers against algebraic cryptanalysis, us-
ing modified versions of Crypto1 and Hitag2 as test subjects. Using these
experiments, we demonstrate that the choice of register taps is an im-
portant element in the design of stream ciphers. Additionally, using data
from manually created and random tap configurations, we create a score
that relates two characteristics of a tap configuration (distance and reg-
ularity) to cipher security.

Keywords: Register taps, stream cipher, Crypto1, Hitag2, algebraic cryptanal-
ysis, SAT-solver

1 Introduction

The design of stream ciphers has become more scrutinized since the advent of
algebraic cryptanalysis. Much attention has been paid to the design of boolean
functions used in stream ciphers, trying to prevent correlation and annihilator
attacks used against them. The criterion that came out of this work is the notion
of algebraic immunity[6], which assesses the affective non-linearity of the func-
tion, given its annihilators. However, while high algebraic immunity is necessary
for cipher security, it is not sufficient, as experimental attacks using Gröbner
bases and SAT-solvers have broken stream ciphers with functions having high
algebraic immunity. The stream ciphers Crypto1 and Hitag2 are examples of
this, as both have high algebraic immunity and yet have been broken using
SAT-solvers[4][5][13]. Though both have been broken, there is a significant dif-
ference in the time needed to break the the two ciphers. This paper explores how



the non-linear function (NLF) taps (the register bits that are fed into the NLF)
affect the time needed to break these ciphers using SAT-solvers.1

Contribution

In this paper we offer experimental results and analysis on the effect of NLF taps
in the cryptanalysis of the stream ciphers Crypto1 and Hitag2 using SAT-solvers.
Timed attacks on Crypto1, Hitag2, and four hybrid cryptosystems that explore
different combinations of the two ciphers’ NLFs and NLF taps are presented. Ad-
ditionally, data from tests run on tap configurations that were manually created
and randomly generated is used to develop a score that relates characteristics of
tap configurations to their security. The paper is organized as follows. Section
2 provides a background for stream ciphers, algebraic cryptanalysis, and SAT-
solvers, while Section 3 describes Crypto1 and Hitag2. In Section 4 we describe
our experimental work on Crypto1 and Hitag2. Section 5 focuses on our experi-
mental work on manually configured and randomly generated tap configurations,
and in Section 6 we develop a security score for tap configurations. The paper
is concluded in Section 7.

2 Stream Ciphers and Algebraic Cryptanalysis

In cryptography, encryption is the algorithmic process of making data unintelli-
gible to those without secret information (a secret key). A variety of algorithms,
called ciphers, exist for doing this. Stream ciphers are a branch of symmetric
key (meaning both the sender and receiver must share the same secret key) en-
cryption algorithms that operate on single bits of data. For stream ciphers, the
secret key is a private bit array that is used in the encryption process. Stream
ciphers generate a pseudo-random stream of bits which get XORed bit-by-bit
with the plaintext (unencrypted message) to produce ciphertext (the encrypted
message). Because they operate on single bits of data, they operate quickly and
do not require prior knowledge of the message length, making them perfect for
use in small electronic devices like mobile phones and smart cards.

Stream ciphers generally consist of some combination of linear feedback shift
registers (LFSRs) and non-linear filter functions (NLFs). NLFs are typically
used to combine bits from the register in a non-linear fashion to produce the
keystream. Each time a new keystream bit is produced, the LFSR shifts by one
spot and the empty spot is filled by a linear combination (a simple XOR) of
some subset of the register.

For example, the simple stream cipher in Figure 1 uses a degree-three NLF
to combine four bits of the register (register bits 2, 3, 5, and 7) in order to
produce the keystream, which then gets XORed with a bit of plaintext. Each
time a bit of keystream is produced, the register shifts one bit to the right, and

1 This research is the continuation of work done at a Research Experience for Under-
graduates (REU) sponsored by the National Science Foundation and jointly held by
Northern Kentucky University and the University of Cincinnati.



the left-most place in the register is filled with the XOR of bits 1, 5, and 7.
Consider what happens if we try to encrypt the message “01000001” and fill the
register with a secret key of [0,0,1,1,0,1,1] from left to right. Then the first bit of
keystream is f(0, 1, 0, 1) = 0 ∗ 1 ∗ 0 + 1 ∗ 0 ∗ 1 + 0 ∗ 1 + 1 ∗ 0 + 0 ∗ 1 + 0 = 0, which
gets XORed with the first bit of plaintext, 0, to produce the ciphertext bit of 0.
The register then shifts one bit to the right and the empty spot is filled with 0
+ 0 + 1 = 1. Then the second keystream bit is generated in a similar fashion
using f(0, 0, 1, 1) and the register is updated again. This continues until the
entire plaintext message is encrypted. If we continued to the end, our keystream
would be [0,1,1,0,0,1,1,1], meaning our plaintext message of “01000001” would
be encrypted as “00100110.” Since XOR is its own inverse, decryption works
in a similar fashion. The receiver simply generates the same stream and XORs
it with the ciphertext to recover the plaintext. Real stream ciphers are larger
and more complex than this example. The ciphers we dealt with, for example,
had 48-bit LFSRs, multiple NLFs, and initialization protocols that set up the
register before generating keystream.

Fig. 1. A simple stream cipher



2.1 Algebraic Cryptanalysis

Cryptanalysis is the process of attempting to decrypt encrypted data without
having access to the secret key. A variety of cryptanalytic techniques exist, but
one that has gained much attention in recent years is algebraic cryptanalysis. Al-
gebraic cryptanalysis aims at attacking ciphers by treating the cryptosystem as a
constraint-satisfaction problem (CSP) and then attempting to solve that CSP. A
CSP is a mathematics problem in which a set of objects must simultaneously sat-
isfy given limitations. In the case of algebraic cryptanalysis the objects are bits
of data and the constraints are the relationships between these bits as specified
by the encryption algorithm. The cipher is modeled by a system of polynomial
equations over some finite field, typically the finite field with two elements, F2,
as there is a natural correspondence between bits of data and the set {0, 1}
with mod 2 arithmetic (addition corresponds to XOR, while multiplication cor-
responds to AND). As an example of this, the following is the polynomial system
representing our earlier simple cipher’s encryption of the plaintext “01000001”
to the ciphertext “00100110.” Solving this system would give us the secret key.

[ x[1]*x[3]*x[5] + x[3]*x[5]*x[6] + x[1]*x[3] + x[3]*x[5]

+ x[5]*x[6] + x[6] + x[17], // Keystream generation

x[1] + x[3] + x[7] + x[8], // Register update

x[2]*x[4]*x[6] + x[4]*x[6]*x[7] + x[2]*x[4] + x[4]*x[6]

+ x[6]*x[7] + x[7] + x[18],

x[2] + x[4] + x[8] + x[9],

x[3]*x[5]*x[7] + x[5]*x[7]*x[8] + x[3]*x[5] + x[5]*x[7]

+ x[7]*x[8] + x[8] + x[19],

x[3] + x[5] + x[9] + x[10],

x[4]*x[6]*x[8] + x[6]*x[8]*x[9] + x[4]*x[6] + x[6]*x[8]

+ x[8]*x[9] + x[9] + x[20],

x[4] + x[6] + x[10] + x[11],

x[5]*x[7]*x[9] + x[7]*x[9]*x[10] + x[5]*x[7] + x[7]*x[9]

+ x[9]*x[10] + x[10] + x[21],

x[5] + x[7] + x[11] + x[12],

x[6]*x[8]*x[10] + x[8]*x[10]*x[11] + x[6]*x[8]

+ x[8]*x[10] + x[10]*x[11] + x[11] + x[22],

x[6] + x[8] + x[12] + x[13],

x[7]*x[9]*x[11] + x[9]*x[11]*x[12] + x[7]*x[9]

+ x[9]*x[11] + x[11]*x[12] + x[12] + x[23],

x[7] + x[9] + x[13] + x[14],

x[8]*x[10]*x[12] + x[10]*x[12]*x[13] + x[8]*x[10]

+ x[10]*x[12] + x[12]*x[13] + x[13] + x[24],

x[8] + x[10] + x[14] + x[15],

x[17], // Because we assume knowledge of

x[18] + 1, // plaintext/ciphertext pairs we know

x[19] + 1, // the values of the keystream bits

x[20], // (keytstream = plaintext + ciphertext)



x[21],

x[22] + 1,

x[23] + 1,

x[24] + 1 ]

Attempts are then made to solve the polynomial system. A variety of meth-
ods exist for solving systems of polynomial equations. These include Gröbner
basis algorithms (such as Faugère’s F4 [9] and F5 [10] algorithms) which focus
on expanding the ideal generated by the polynomials, eXtended Linearization
algorithms (such as XL [3], MutantXL [7], and MXL2 [12]) which use linear
algebra, and logic based SAT-solvers (such as MiniSAT [8] and CryptoMiniSAT
[13]) since the work is typically done over F2. In general, finding the solutions of
a polynomial system over a finite field is NP-complete. However, the polynomial
systems that result from modeling ciphers are often very sparse (i.e., there are a
large number of coefficients equal to zero) and highly structured, and therefore
often permit successful cryptanalysis. While algebraic attacks have had limited
success on other types of ciphers, stream ciphers have permitted a number of suc-
cessful algebraic cryptanalysis attempts. Many of these successful attacks have
used SAT-solvers as their method for solving. For a thorough introduction to
algebraic cryptanalysis, see [1].

2.2 SAT-solvers in Cryptanalysis

SAT-solver programs try to determine whether or not a given set of boolean
constraints has a solution. Conflict-driven SAT-solvers, such as MiniSat [8] (the
program used for our experiments), use tree-based search algorithms with learn-
ing. MiniSat guesses the value of a variable and propagates the value throughout.
If this guess causes a conflict with an earlier guess, MiniSat creates a new learned
constraint, backtracks up the tree to the highest guess allowed by the new con-
straint, and changes the value of that guess. These learned constraints restrict
the search space by trimming branches of the search tree, making it faster than
brute force provided a solution exists. For an introduction to SAT-solvers, see
Chapter 14 of [1].

SAT-solvers operate on constraints in their conjunctive normal form (CNF).
In CNF, each variable and monomial from a polynomial system becomes a
boolean variable. The disjunction (ORing) of boolean variables is called a clause,
and CNF is the conjunction (ANDing) of these clauses. To use a SAT-solver on
a polynomial system, the polynomials must first be converted to CNF. A va-
riety of programs exist for this. Soos [14] even has a program, Grain of Salt,
that translates stream ciphers directly to CNF. We used a Perl script written
by Jeremy Erickson2 to convert our polynomials into CNF. The CNF of the
polynomial system from our earlier example can be found in Appendix A.

2 A former NKU/UC REU participant. Now a Computer Science graduate student at
the University of North Carolina.



3 Crypto1 and Hitag2

Crypto1 and Hitag2 are two stream ciphers that have received a lot of negative
attention in recent years, as both ciphers have been successfully attacked on
multiple occasions, often with algebraic cryptanalysis. Both ciphers have been
used in industrial applications making their lack of security more glaring.

3.1 Crypto1

Crypto1 is a proprietary stream cipher used in the MiFare Classic smart card
and is manufactured by NXP (formerly Phillips) Semiconductors. The MiFare
Classic smart card is used in a variety of public transportation payment sys-
tems, most notably the London Oyster card. Since MiFare Classic has been
reverse engineered[11], the Crypto1 cipher has been attacked and broken numer-
ous times. Some of these attacks used SAT-solver based algebraic cryptanaly-
sis[4][13]. These attacks broke Crypto1 in 200 seconds [4] and 40 seconds [13]
respectively. The Crypto1 cipher consists of a 48-bit LFSR and six NLFs that are
combined to generate keystream. The LFSR has an update function f : F18

2 → F2

that simply XORs 18 bits of register to produce the new bit. There are 20 bits of
register that are fed into five degree-3 NLFs gi : F4

2 → F2, i = 0, ..., 4. The out-
puts of these functions are subsequently fed into one degree-4 NLF g5 : F5

2 → F2

that produces the keystream output (see Figure 1 of Appendix B).
The cipher is initialized using a 48-bit secret key, a 32-bit serial number, and

two 32-bit initialization vectors (IVs) in the following manner. The secret key
is used to fill the register. Then, for 32 clocks, the LFSR shifts one position to
the left and one bit of serial is XORed with one bit from the Tag IV and the
output from f to fill the new position in the register. The cipher continues with
a second initialization phase for 32 more clocks. The LFSR shifts one position
to the left, and one bit of Reader IV gets XORed with one bit of keystream (the
output of g5(g0, ..., g4)) and the output from f , to fill the empty space in the
register. After this, initialization is complete. Then keystream generation begins.
Keystream generation operates for n-clocks, where n is the number of plaintext
bits to encrypt. The register is updated exclusively by the linear feedback func-
tion f for the rest of the encryption, and plaintext bits are encrypted by XORing
them with a keystream bit produced at each clock. The keystream is generated
using the functions g0, ..., g5 as described earlier. The complete initialization and
encryption process of Crypto1 is described in Algorithm 1.

3.2 Hitag2

Hitag2 is a stream cipher very similar to Crypto1. Hitag2 is used in RFID car
lock remotes and is also manufactured by NXP Semiconductors. These remotes
are used in variety of cars, including some models made by Ford, GM, and Volvo.
Though attacks against Hitag2 are not as common as those against Crypto1, it
has been broken since its design became public, including attacks using SAT-
solvers [5] [13].



Algorithm 1 Crypto1

{x1...x48 are register bits}
{n is the number of plaintext bits to encrypt}
{g0 = g3 = acd + bcd + ab + ac + ad + bc + cd + a + b}
{g1 = g2 = g4 = abc + acd + bcd + ab + ac + ad + bc + bd + c}
{g5 = abce + bcde + abd + abe + acd + ade + bde + ac + ad + ae + de + a + e}

{First initialization phase}

for i in 1..32 do
t := x1 ⊕ x6 ⊕ x10 ⊕ x11 ⊕ x13 ⊕ x15 ⊕ x16 ⊕ x18 ⊕ x20 ⊕ x25 ⊕ x26 ⊕ x28 ⊕ x30 ⊕
x36 ⊕ x40 ⊕ x42 ⊕ x43 ⊕ x44⊕ Serial[i] ⊕ TagIV[i]
(x1, ..., x48) := (x2, ..., x48, t)

end for

{Second initialization phase}

for i in 1..32 do
t := x1⊕x6⊕x10⊕x11⊕x13⊕x15⊕x16⊕x18⊕x20⊕x25⊕x26⊕x28⊕x30⊕x36⊕x40⊕
x42 ⊕ x43 ⊕ x44⊕ ReaderIV[i] ⊕g5(g0(x10, x12, x14, x16), ..., g4(x42, x44, x46, x48))
(x1, ..., x48) := (x2, ..., x48, t)

end for

{Keystream generation}

for i in 1..n do
t := x1 ⊕ x6 ⊕ x10 ⊕ x11 ⊕ x13 ⊕ x15 ⊕ x16 ⊕ x18 ⊕ x20 ⊕ x25 ⊕ x26 ⊕ x28 ⊕ x30 ⊕
x36 ⊕ x40 ⊕ x42 ⊕ x43 ⊕ x44

ki := g5(g0(x10, x12, x14, x16), ..., g4(x42, x44, x46, x48))
(x1, ..., x48) := (x2, ..., x48, t)

end for

Hitag2 also consists of a 48-bit LFSR and six NLFs that are combined to
generate keystream. The LFSR’s feedback function f : F16

2 → F2 XORs 16
register bits to produce the new register bit. There are 20 bits of register that
are fed into five degree-3 NLFs gi : F4

2 → F2, i = 0, ..., 4. The outputs of these
functions are subsequently fed into one degree-4 NLF g5 : F5

2 → F2 that produces
the keystream output.

Hitag2’s initialization process differs slightly from Crypto1. Hitag2 is initial-
ized using a 48-bit secret key, a 32-bit serial number, and a 32-bit IV. Its LFSR
is initially filled with the 32-bit serial and the 16 lowest ranking bits of key. For
32 clocks, the LFSR shifts one position to the left, and the empty register bit is
filled with the XOR or three bits: one bit of IV, one bit of key not already in
the register, and one bit of output from the NLFs. Then keystream generation
begins. The LFSR is updated by f , and keystream is generated using g0, ..., g5.
The encryption algorithm is listed in Algorithm 2, and a diagram of the cipher
can be found in Figure 2 of Appendix B.



Algorithm 2 Hitag2

{x1...x48 are register bits}
{n is the number of plaintext bits to encrypt}
{g0 = g4 = abc + ac + bc + ad + a + b + d + 1}
{g1 = g2 = g3 = abd + acd + bcd + ab + ac + bc + a + b + d + 1}
{g5 = abce+abde+acd+ade+bcd+bce+cde+ab+bc+bd+be+ce+de+b+d+1}

{Initialization phase}

for i in 1..32 do
t := IV[i] ⊕ KEY[i+16] ⊕g5(g0(x2, x3, x5, x6), g1(x8, x12, x14, x15), g2(x17, x21,
x23, x26), g3(x28, x29, x31, x33), g4(x34, x43, x44, x46))
(x1, ..., x48) := (x2, ..., x48, t)

end for

{Keystream generation}

for i in 1..n do
t := x1⊕x3⊕x4⊕x7⊕x8⊕x9⊕x17⊕x23⊕x24⊕x27⊕x31⊕x42⊕x43⊕x44⊕x47⊕x48

ki := g5(g0(x2, x3, x5, x6), g1(x8, x12, x14, x15), g2(x17, x21, x23, x26), g3(x28, x29, x31,
x33), g4(x34, x43, x44, x46))
(x1, ..., x48) := (x2, ..., x48, t)

end for

4 Experimental Comparison of Crypto1 and Hitag2

The main goal for this portion of our research was to determine if the difference
in register taps was the main factor in the security desparity between the two
ciphers. Since the non-linear functions (NLFs) and register taps (the inputs of
the NLFs) were the most apparent differences between the ciphers, these were
the variables we concentrated on. To analyze the effect of NLFs and register
taps on the stream ciphers Crypto1 and Hitag2, SAT-solver timing tests were
conducted on the following systems:

– Crypto1
– Hitag2
– Crypto1 with Hitag2 NLFs
– Hitag2 with Crypto1 NLFs
– Crypto1 with Hitag2 Taps
– Hitag2 with Crypto1 Taps

For each system, ten instances were created and tested. Each of these in-
stances used a different randomly generated key, IV, and serial to encrypt 56
bits of plaintext. For Hitag2 this is not a practical attack (as noted in [5] en-
crypting a message of this length would require additional initialization vectors),
but 56 bits were chosen to ensure a unique solution for each system, and to stay
consistent with the attacks in [13]. The encryptions and polynomial systems were



generated using MAGMA3 [2], converted to CNF, and then solved using Min-
iSat 2.04. All tests were run on Wittenberg University’s WARP2 next generation
computing cluster.

The SAT-solver running times (in seconds) of Crypto1, Hitag2, and hybrids
are listed in Table 1. The ∗ symbol indicates that the given test was killed after
14 days. Each system used the same ten seeds to generate the random keys, IVs,
and serials.

Table 1. SAT-solving times for Crypto1, Hitag2, and Hybrid Systems with swapped
NLFs(in seconds)

C1 w/ H2 w/ C1 w/ H2 w/
Cipher Crypto1 Hitag2 H2 NLFs C1 NLFs H2 Taps C1 Taps

Test 1 26.88 ∗ 516.12 157,367.20 2958.50 5994.41
Test 2 127.12 726,967.74 206.65 210,117.45 63,960.98 1052.12
Test 3 276.56 799,127.10 724.55 108,557.26 5860.80 3677.58
Test 4 153.89 ∗ 145.93 53,260.86 ∗ 4131.03
Test 5 1752.91 ∗ 448.61 46,375.79 ∗ 285.55
Test 6 152.72 ∗ 50.64 ∗ 850,311.27 6092.15
Test 7 712.28 ∗ 1059.98 32,949.12 30,202.11 862.00
Test 8 380.74 102,639.52 217.46 ∗ 57,846.76 448.47
Test 9 1340.23 ∗ 362.25 98,052.59 50,286.20 4372.88
Test 10 86.63 ∗ 1361.33 101,613.74 314,860.44 1262.57

Mean 500.90 N/A 509.35 N/A N/A 2817.91

Based on this data, it appears that the greatest difference between Crypto1
and Hitag2 in terms of security is the difference in register taps, as expected.
Swapping NLFs had relatively small effects (increasing the average runtime by
nine seconds in Crypto1 and causing five more tests to finish in less than 14 days
in Hitag2), but swapping taps had a large impact. Swapping the taps caused
Crypto1 to go from having an average runtime of about 8 minutes, to having 2
tests fail to finish in under fourteen days. Similarly, Hitag2 only had three tests
finish in under fourteen days, but using Crypto1 taps, all 10 finished with an
average runtime of about 47 minutes.

5 Manual and Random Tap Configurations

Based on our results with Crypto1, Hitag2, and the four hybrid systems, we
discovered the choice of register taps to be an important factor in the security of

3 Special thanks to the Computational Algebra Group at the University of Sydney for
providing MAGMA for this project.

4 Available at http://minisat.se/MiniSat.html



stream ciphers. Since the choice of taps is so important, we wanted to quantify
how different aspects of tap configurations affected security. In order to do this,
we ran tests on cryptosystems following Crypto1’s protocol but with manually
chosen taps.

5.1 Manually Configured Taps

The characteristics we chose to focus on were regularity (whether the taps fol-
lowed a regular pattern), distance (how far apart the taps were), and register
position (whether the taps were concentrated in the left, middle, or right por-
tion of the register). Additional details on these characteristics can be found in
Section 6.1. Tests were conducted in the same manner as those on Crypto1 and
Hitag2, and were run on the following systems:

– Left-adjusted Crypto1—every other tap is used with the collection beginning
on the left side of the register

– Center-adjusted Crypto1—every other tap is used with the collection of used
taps centered in the register

– Left Consecutive—the twenty left-most taps in the register are used
– Center Consecutive—the twenty taps in the center of the register are used
– Right Consecutive—the twenty right-most taps in the register are used
– 2-2 Taps—bits in the register alternate between two consecutive taps and

two consecutive non-taps
– 1-2-1 Taps—the number of register bits between taps alternates between one

and two
– 19-1 Taps—the 19 left-most taps and the right-most tap
– 10-10 Taps—the ten left-most taps, a space, and then the next ten taps

A visualization of these tap configurations can be found in Appendix C. The
results are summarized in the Table 2.

Table 2. SAT-solving times for Crypto1 with manually configured taps (in seconds)

Left Mid Right

Taps Crypto1 Left C1 Mid C1 Consec Consec Consec 2-2 Taps 1-2-1 Taps 19-1 Taps 10-10 Taps

Test 1 26.88 132.12 226.23 9.02 9.98 0.96 3413.63 52,049.16 9.04 2.05

Test 2 127.12 2808.10 451.39 24.20 2.29 0.24 9799.41 29,108.20 83.46 1.09

Test 3 275.56 80.08 136.66 1.46 0.84 1.68 894.08 5311.77 3.59 1.79

Test 4 153.89 616.59 13.19 1.92 3.13 1.61 24,364.80 146,676.02 34.85 4.50

Test 5 1752.91 1273.40 135.61 2.22 6.10 3.99 26,621.50 16,481.04 24.6 2.58

Test 6 152.72 274.68 56.80 9.95 2.60 1.29 563.35 28,874.82 18.92 3.54

Test 7 712.28 434.07 62.47 3.51 43.18 18.76 7377.13 7107.00 175.18 3.61

Test 8 380.74 117.08 589.71 5.00 1.18 1.77 1962.62 42,150.36 5.81 2.15

Test 9 1340.23 492.01 329.37 3.84 3.99 1.02 604.16 103,569.28 33.87 9.31

Test 10 86.63 2123.95 846.03 2.22 5.89 5.02 16,178.53 19,349.93 27.41 1.73

Mean 500.90 835.21 284.75 6.33 7.92 3.652 9177.92 45,067.76 41.67 3.24

This data indicated that distance was positively correlated with security
and that register position had little effect. It also suggested that regularity was



negatively correlated with security. To further explore this, we tested randomly
generated tap configurations.

5.2 Randomly Generated Taps

We randomly generated taps for six different tap configurations (A-F) and ran
tests on them in the same fashion as our tests above. These tests used Crypto1’s
protocol and functions and the results are shown in the Table 3.

Table 3. SAT-solving times for Crypto1 with randomly generated taps (in seconds)

Taps Rand A Rand B Rand C Rand D Rand E Rand F

Test 1 622,821.10 39,462.55 49,157.27 663,549.73 423,270.91 29,106.78
Test 2 14,242.05 23,763.62 72,341.33 ∗ 589,014.20 210,869.40
Test 3 391,570.56 1964.12 3714.08 180,678.58 412,970.57 446,532.26
Test 4 50,378.07 13,024.08 763,204.95 658,268.54 192,860.62 62,713.09
Test 5 103,576.18 9887.10 12,915.87 ∗ 620,232.68 611,247.11
Test 6 736,915.77 662,668.36 738,421.84 1,028,884.23 258,563.13 197,543.79
Test 7 162,965.86 5474.42 335,768.48 28,760.83 32,282.07 69,156.34
Test 8 84,086.51 57,873.49 172,888.32 40,447.96 ∗ 11,764.21
Test 9 138,650.05 97,395.13 155,567.60 ∗ 283,487.27 264,012.74
Test 10 575,653.63 15,869.65 2569.52 ∗ ∗ 32,328.55

Mean 288,085.98 92,738.25 230,654.93 ∗ ∗ 193,527.43

These results further strengthened our notion that distance was positively
correlated with security and regularity was negatively correlated with security,
as the random tap configurations had more distance and less regularity, and
took significantly longer to break. To better quantify this effect, we decided to
develop a security score that assigns a number to tap configurations in order to
predict security.

6 A Security Score for Tap Configurations

In order to quantify the ideas we saw in our experimental results, we developed a
score that predicts security based on tap configuration characteristics. From our
experimental results it was clear that distance and regularity subscores should be
part of this score. However, capturing these qualities (especially regularity) in one
measure proved difficult5, so we ran a linear regression on six subscores that each
help describe the distance and regularity characteristics of a tap configuration.
These subscores were computed using a Java program we wrote which can be
found in Appendix D. Descriptions of the subscores follow.

5 Our first attempt at a security score was tested on a configuration that was created
to have a Monte Carlo maximum score. All ten tests finished in an average of 2 days.



6.1 Distance

For the notion of distance, we wanted a measurement of how much spread there
was between register taps. To do this, we decided to measure the distance of
individual taps from a baseline configuration, and sum these distances. As base-
lines, we chose the Right Consecutive and Left Consecutive configurations. The
reason for these baselines is the close spacing of the taps (they are consecutive),
and the lack of security these tap configurations offered. We chose two baseline
configurations to account for differences in register position, using the minimum
of the two scores calculated.

As an example of how we calculated distance, consider the Crypto1 tap con-
figuration: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46,
48. Since the Left Consecutive taps are 1 through 20, and the Right Consecutive
taps are 29 through 48, our distance scores are:

LeftDistance = |1− 10|+ |2− 12|+ |3− 14|+ ... + |19− 46|+ |20− 48| = 370

RightDistance = |29−10|+ |30−12|+ |31−14|+ ...+ |47−46|+ |48−48| = 190

So Crypto1’s final distance score would be the minimum of these two scores,
which is 190.

6.2 Repetition

Regularity is a concept that is easy to understand, but difficult to quantify. We
wanted a measure that shows whether a configuration has a regular, evenly-
spaced tap pattern or not. Our first method of doing this, repetition, was to
look at the four taps used in each of the five NLFs and see how many times
those taps were used together in an NLF. For each set of four taps, we counted
how many times all four those taps appeared in the same function, how many
times three appeared in the same function, and how many times two appeared
in the same function after 48 clocks (one complete cycle through the register).
Instances where all four appeared in the same function were weighted with a
four, three with a three, and two with a two. We did this for all five sets of taps.
The result was a score that reflected our intentions as patterned configurations
like Crypto1 and our Consecutive taps, had the highest regularity scores (183),
and unpatterned configurations, like Hitag2, had a much lower score (109). The
complete algorithm can be found in the getRepetitionScore() method of our Java
source code in Appendix D.

6.3 Space Count

Another measure of regularity was our space count. This measure simply counted
the number of different spaces between register taps in each tap configuration.
For example, Crypto1 had one space between every tap, so the number of distinct
spacings (our space count) was one. Our 1-2-1 taps however, alternated between



having one and two spaces between taps, so the number of distinct spacings was
two. The complete algorithm can be found in the spaceCount() method of our
Java source code in Appendix D.

6.4 Spacing Deviation

Spacing deviation was another measure we used to capture the regularity of a
tap configuration. In order to calculate our spacing deviation, we took the set of
spacings and computed the standard deviation of that set. So evenly spaced con-
figurations like Crypto1 had a spacing deviation of 0, while sporadically spaced
configurations like Hitag2 (1.808) had higher spacing deviations. The complete
algorithm can be found in the spaceDev() method of our Java source code in
Appendix D.

6.5 Span Deviation

Span deviation was our last score that focused solely on regularity. We defined a
span as the length of a set of continuous taps. Our span deviation was then the
standard deviation of the set of spans for each tap configuration. For example
our consecutive taps had one span of 20 taps and Crypto1 had 20 spans of 1 tap,
but both of their span deviations were 0. The complete algorithm can be found
in the spanDev() method of our Java source code in Appendix D.

6.6 Inclusion

Our final measure was inclusion, which incorporates both distance and regularity.
Our inclusion score simply shifts the register four times, and each time counts
the number of original taps used in the NLFs. This characteristic is negatively
correlated with security, as configurations that were solved quickly had higher
inclusion scores. The complete algorithm can be found in the getDiffusionScore()
method of our Java source code in Appendix D.

6.7 Fitting the Security Score

After computing the individual subscores, our next step was combining them in a
meaninful way. Using the statistics software MiniTab, we ran a linear regression
with our subscores as the independent variables, and the natural log-adjusted
(mean) time6 as our dependent variable. The result was a score (indicated by
the Final Score column in the table) that combined our subscores in the the
following manner:

FinalScore = 8.05 + .014 ∗Distance− .0081 ∗Repetition + .6 ∗ SpaceCount

+1.1 ∗ SpaceDev − .573 ∗ SpanDev − .0939 ∗ Inclusion



Table 4. Configuration subscores, final score, and log-adjusted time

Distance Regularity Inclusion Space Count Space Dev Span Dev Final Score Log Time

Right Con 0 183 70 1 0 0 0.5947 1.2953
Crypto1 190 183 37 1 0 0 6.3534 6.2164
2-2 Taps 280 162 37 2 0.9986 0 9.4820 9.1246
1-2-1 Taps 280 162 19 2 0.4993 0 10.6229 10.7159
Hitag2 230 109 29 5 1.8080 0.4949 12.3692 12.8600
Rand A 277 125 36 6 1.8018 2.0494 11.9428 12.5710
Rand B 250 102 31 6 1.6560 1.4025 12.4309 11.4375
Rand C 255 108 29 6 1.4643 1.1513 12.5731 12.3487
Rand D 263 117 28 6 1.8727 1.1923 13.1319 13.5197
Rand E 266 104 33 6 2.1353 0.7454 13.3546 13.1677
Rand F 271 64 27 4 1.2230 0.7458 12.1083 12.1732
19-1 Taps 28 168 66 2 6.2523 9.000 3.8043 3.7298
10-10 Taps 10 182 66 2 0.2233 0 1.9640 1.2953

The data for this regression can be found in the Table 4.

As seen in the Figure 2, our regression analysis resulted in a very good fit.
Using the equation of LogT ime = −0.0178 + 0.9996 ∗ FinalScore, we obtained
a fit with an R-squared value of 98.8%. These six qualities have an apparent
relationship with cipher security.

Fig. 2. A fitted line plot of our security score against the log-adjusted mean times

6 For configurations where a mean was not possible (as not all instances finished), we
used our cutoff time (2 weeks) as the time for those tests.



6.8 Our Security Score as a Predictor

One of our goals was to develop our security score as a tool for stream cipher de-
sign. To test our score in this regard, we included in our Java program a method
to randomly generate tap configurations. We generated 50 million configurations,
computed their scores, and kept track of the maximum score. The highest score
we obtained was 15.25 for the configuration 1, 2, 8, 9, 10, 13, 14, 18, 19, 20, 25,
26, 27, 38, 39, 41, 42, 44, 46, 47, and we ran tests on this configuration, hoping
to demonstrate that this configuration was secure.

If the data behaves as the score predicts, then these tests should run in
average of e15.25 seconds, or about 49 days (though results this extreme are
unlikely as our cutoff times skew the end behavior of our security score). Our
final results are still pending, but early data shows that it is already our most
secure configuration, indicating that our security score is a useful tool in stream
cipher analysis and design.

7 Conclusion and Future Work

Register taps play a major role in stream cipher security with regards to SAT-
based Cryptanalysis. In our experiments with Crypto1, Hitag2, and the four
hybrid systems we determined that the difference in taps was the biggest factor
in the two ciphers’ security difference. Furthermore, by examining our manually
configured and randomly generated taps we identified quantifiable characteristics
(distance and regularity) that are highly correlated with security, and developed
a security score based on these characteristics. In the future, it is our hope that
this kind of analysis will be carried out in stream cipher design. Experimental
cryptanalysis reduces the chance that weak ciphers like Crypto1 will be used in
practical applications.
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A CNF of our Simple Cipher Example

There are 73 boolean variables and 502 clauses. Each number is a boolean vari-
able (with ‘-’ indicating the negation of that variable) and each line is a clause.
Each variable in a clause is ORed together and each clause is ANDed together.
The variables 1 through 24 correspond to x[1] through x[24].

p cnf 73 502

25 0

1 -26 0 // 26 corresponds the monomial x[1]*x[3]*x[5]

3 -26 0 // 3 is True (x[3] = 1) or 26 is False (the monomial = 0)

5 -26 0

26 -1 -3 -5 0

3 -27 0

5 -27 0

6 -27 0

27 -3 -5 -6 0

1 -28 0

3 -28 0

28 -1 -3 0

3 -29 0

5 -29 0

29 -3 -5 0

5 -30 0

6 -30 0

30 -5 -6 0

-26 27 28 29 30 31 0

-26 -27 -28 29 30 31 0

-26 -27 -28 -29 -30 31 0

-26 -27 -28 -29 30 -31 0

-26 -27 -28 29 -30 -31 0

-26 -27 28 -29 30 31 0

-26 -27 28 -29 -30 -31 0

-26 -27 28 29 -30 31 0

-26 -27 28 29 30 -31 0

-26 27 -28 -29 30 31 0

-26 27 -28 -29 -30 -31 0

-26 27 -28 29 -30 31 0

-26 27 -28 29 30 -31 0

-26 27 28 -29 -30 31 0

-26 27 28 -29 30 -31 0

-26 27 28 29 -30 -31 0

26 -27 28 29 30 31 0

26 -27 -28 -29 30 31 0

26 -27 -28 -29 -30 -31 0

26 -27 -28 29 -30 31 0



26 -27 -28 29 30 -31 0

26 -27 28 -29 -30 31 0

26 -27 28 -29 30 -31 0

26 -27 28 29 -30 -31 0

26 27 -28 29 30 31 0

26 27 -28 -29 -30 31 0

26 27 -28 -29 30 -31 0

26 27 -28 29 -30 -31 0

26 27 28 -29 30 31 0

26 27 28 -29 -30 -31 0

26 27 28 29 -30 31 0

26 27 28 29 30 -31 0

-31 6 17 0

-31 -6 -17 0

31 -6 17 0

31 6 -17 0

-1 3 7 8 0

-1 -3 -7 8 0

-1 -3 7 -8 0

-1 3 -7 -8 0

1 -3 7 8 0

1 -3 -7 -8 0

1 3 -7 8 0

1 3 7 -8 0

2 -32 0

4 -32 0

6 -32 0

32 -2 -4 -6 0

4 -33 0

6 -33 0

7 -33 0

33 -4 -6 -7 0

2 -34 0

4 -34 0

34 -2 -4 0

4 -35 0

6 -35 0

35 -4 -6 0

6 -36 0

7 -36 0

36 -6 -7 0

-32 33 34 35 36 37 0

-32 -33 -34 35 36 37 0

-32 -33 -34 -35 -36 37 0

-32 -33 -34 -35 36 -37 0



-32 -33 -34 35 -36 -37 0

-32 -33 34 -35 36 37 0

-32 -33 34 -35 -36 -37 0

-32 -33 34 35 -36 37 0

-32 -33 34 35 36 -37 0

-32 33 -34 -35 36 37 0

-32 33 -34 -35 -36 -37 0

-32 33 -34 35 -36 37 0

-32 33 -34 35 36 -37 0

-32 33 34 -35 -36 37 0

-32 33 34 -35 36 -37 0

-32 33 34 35 -36 -37 0

32 -33 34 35 36 37 0

32 -33 -34 -35 36 37 0

32 -33 -34 -35 -36 -37 0

32 -33 -34 35 -36 37 0

32 -33 -34 35 36 -37 0

32 -33 34 -35 -36 37 0

32 -33 34 -35 36 -37 0

32 -33 34 35 -36 -37 0

32 33 -34 35 36 37 0

32 33 -34 -35 -36 37 0

32 33 -34 -35 36 -37 0

32 33 -34 35 -36 -37 0

32 33 34 -35 36 37 0

32 33 34 -35 -36 -37 0

32 33 34 35 -36 37 0

32 33 34 35 36 -37 0

-37 7 18 0

-37 -7 -18 0

37 -7 18 0

37 7 -18 0

-2 4 8 9 0

-2 -4 -8 9 0

-2 -4 8 -9 0

-2 4 -8 -9 0

2 -4 8 9 0

2 -4 -8 -9 0

2 4 -8 9 0

2 4 8 -9 0

3 -38 0

5 -38 0

7 -38 0

38 -3 -5 -7 0

5 -39 0



7 -39 0

8 -39 0

39 -5 -7 -8 0

3 -40 0

5 -40 0

40 -3 -5 0

5 -41 0

7 -41 0

41 -5 -7 0

7 -42 0

8 -42 0

42 -7 -8 0

-38 39 40 41 42 43 0

-38 -39 -40 41 42 43 0

-38 -39 -40 -41 -42 43 0

-38 -39 -40 -41 42 -43 0

-38 -39 -40 41 -42 -43 0

-38 -39 40 -41 42 43 0

-38 -39 40 -41 -42 -43 0

-38 -39 40 41 -42 43 0

-38 -39 40 41 42 -43 0

-38 39 -40 -41 42 43 0

-38 39 -40 -41 -42 -43 0

-38 39 -40 41 -42 43 0

-38 39 -40 41 42 -43 0

-38 39 40 -41 -42 43 0

-38 39 40 -41 42 -43 0

-38 39 40 41 -42 -43 0

38 -39 40 41 42 43 0

38 -39 -40 -41 42 43 0

38 -39 -40 -41 -42 -43 0

38 -39 -40 41 -42 43 0

38 -39 -40 41 42 -43 0

38 -39 40 -41 -42 43 0

38 -39 40 -41 42 -43 0

38 -39 40 41 -42 -43 0

38 39 -40 41 42 43 0

38 39 -40 -41 -42 43 0

38 39 -40 -41 42 -43 0

38 39 -40 41 -42 -43 0

38 39 40 -41 42 43 0

38 39 40 -41 -42 -43 0

38 39 40 41 -42 43 0

38 39 40 41 42 -43 0

-43 8 19 0



-43 -8 -19 0

43 -8 19 0

43 8 -19 0

-3 5 9 10 0

-3 -5 -9 10 0

-3 -5 9 -10 0

-3 5 -9 -10 0

3 -5 9 10 0

3 -5 -9 -10 0

3 5 -9 10 0

3 5 9 -10 0

4 -44 0

6 -44 0

8 -44 0

44 -4 -6 -8 0

6 -45 0

8 -45 0

9 -45 0

45 -6 -8 -9 0

4 -46 0

6 -46 0

46 -4 -6 0

6 -47 0

8 -47 0

47 -6 -8 0

8 -48 0

9 -48 0

48 -8 -9 0

-44 45 46 47 48 49 0

-44 -45 -46 47 48 49 0

-44 -45 -46 -47 -48 49 0

-44 -45 -46 -47 48 -49 0

-44 -45 -46 47 -48 -49 0

-44 -45 46 -47 48 49 0

-44 -45 46 -47 -48 -49 0

-44 -45 46 47 -48 49 0

-44 -45 46 47 48 -49 0

-44 45 -46 -47 48 49 0

-44 45 -46 -47 -48 -49 0

-44 45 -46 47 -48 49 0

-44 45 -46 47 48 -49 0

-44 45 46 -47 -48 49 0

-44 45 46 -47 48 -49 0

-44 45 46 47 -48 -49 0

44 -45 46 47 48 49 0



44 -45 -46 -47 48 49 0

44 -45 -46 -47 -48 -49 0

44 -45 -46 47 -48 49 0

44 -45 -46 47 48 -49 0

44 -45 46 -47 -48 49 0

44 -45 46 -47 48 -49 0

44 -45 46 47 -48 -49 0

44 45 -46 47 48 49 0

44 45 -46 -47 -48 49 0

44 45 -46 -47 48 -49 0

44 45 -46 47 -48 -49 0

44 45 46 -47 48 49 0

44 45 46 -47 -48 -49 0

44 45 46 47 -48 49 0

44 45 46 47 48 -49 0

-49 9 20 0

-49 -9 -20 0

49 -9 20 0

49 9 -20 0

-4 6 10 11 0

-4 -6 -10 11 0

-4 -6 10 -11 0

-4 6 -10 -11 0

4 -6 10 11 0

4 -6 -10 -11 0

4 6 -10 11 0

4 6 10 -11 0

5 -50 0

7 -50 0

9 -50 0

50 -5 -7 -9 0

7 -51 0

9 -51 0

10 -51 0

51 -7 -9 -10 0

5 -52 0

7 -52 0

52 -5 -7 0

7 -53 0

9 -53 0

53 -7 -9 0

9 -54 0

10 -54 0

54 -9 -10 0

-50 51 52 53 54 55 0



-50 -51 -52 53 54 55 0

-50 -51 -52 -53 -54 55 0

-50 -51 -52 -53 54 -55 0

-50 -51 -52 53 -54 -55 0

-50 -51 52 -53 54 55 0

-50 -51 52 -53 -54 -55 0

-50 -51 52 53 -54 55 0

-50 -51 52 53 54 -55 0

-50 51 -52 -53 54 55 0

-50 51 -52 -53 -54 -55 0

-50 51 -52 53 -54 55 0

-50 51 -52 53 54 -55 0

-50 51 52 -53 -54 55 0

-50 51 52 -53 54 -55 0

-50 51 52 53 -54 -55 0

50 -51 52 53 54 55 0

50 -51 -52 -53 54 55 0

50 -51 -52 -53 -54 -55 0

50 -51 -52 53 -54 55 0

50 -51 -52 53 54 -55 0

50 -51 52 -53 -54 55 0

50 -51 52 -53 54 -55 0

50 -51 52 53 -54 -55 0

50 51 -52 53 54 55 0

50 51 -52 -53 -54 55 0

50 51 -52 -53 54 -55 0

50 51 -52 53 -54 -55 0

50 51 52 -53 54 55 0

50 51 52 -53 -54 -55 0

50 51 52 53 -54 55 0

50 51 52 53 54 -55 0

-55 10 21 0

-55 -10 -21 0

55 -10 21 0

55 10 -21 0

-5 7 11 12 0

-5 -7 -11 12 0

-5 -7 11 -12 0

-5 7 -11 -12 0

5 -7 11 12 0

5 -7 -11 -12 0

5 7 -11 12 0

5 7 11 -12 0

6 -56 0

8 -56 0



10 -56 0

56 -6 -8 -10 0

8 -57 0

10 -57 0

11 -57 0

57 -8 -10 -11 0

6 -58 0

8 -58 0

58 -6 -8 0

8 -59 0

10 -59 0

59 -8 -10 0

10 -60 0

11 -60 0

60 -10 -11 0

-56 57 58 59 60 61 0

-56 -57 -58 59 60 61 0

-56 -57 -58 -59 -60 61 0

-56 -57 -58 -59 60 -61 0

-56 -57 -58 59 -60 -61 0

-56 -57 58 -59 60 61 0

-56 -57 58 -59 -60 -61 0

-56 -57 58 59 -60 61 0

-56 -57 58 59 60 -61 0

-56 57 -58 -59 60 61 0

-56 57 -58 -59 -60 -61 0

-56 57 -58 59 -60 61 0

-56 57 -58 59 60 -61 0

-56 57 58 -59 -60 61 0

-56 57 58 -59 60 -61 0

-56 57 58 59 -60 -61 0

56 -57 58 59 60 61 0

56 -57 -58 -59 60 61 0

56 -57 -58 -59 -60 -61 0

56 -57 -58 59 -60 61 0

56 -57 -58 59 60 -61 0

56 -57 58 -59 -60 61 0

56 -57 58 -59 60 -61 0

56 -57 58 59 -60 -61 0

56 57 -58 59 60 61 0

56 57 -58 -59 -60 61 0

56 57 -58 -59 60 -61 0

56 57 -58 59 -60 -61 0

56 57 58 -59 60 61 0

56 57 58 -59 -60 -61 0



56 57 58 59 -60 61 0

56 57 58 59 60 -61 0

-61 11 22 0

-61 -11 -22 0

61 -11 22 0

61 11 -22 0

-6 8 12 13 0

-6 -8 -12 13 0

-6 -8 12 -13 0

-6 8 -12 -13 0

6 -8 12 13 0

6 -8 -12 -13 0

6 8 -12 13 0

6 8 12 -13 0

7 -62 0

9 -62 0

11 -62 0

62 -7 -9 -11 0

9 -63 0

11 -63 0

12 -63 0

63 -9 -11 -12 0

7 -64 0

9 -64 0

64 -7 -9 0

9 -65 0

11 -65 0

65 -9 -11 0

11 -66 0

12 -66 0

66 -11 -12 0

-62 63 64 65 66 67 0

-62 -63 -64 65 66 67 0

-62 -63 -64 -65 -66 67 0

-62 -63 -64 -65 66 -67 0

-62 -63 -64 65 -66 -67 0

-62 -63 64 -65 66 67 0

-62 -63 64 -65 -66 -67 0

-62 -63 64 65 -66 67 0

-62 -63 64 65 66 -67 0

-62 63 -64 -65 66 67 0

-62 63 -64 -65 -66 -67 0

-62 63 -64 65 -66 67 0

-62 63 -64 65 66 -67 0

-62 63 64 -65 -66 67 0



-62 63 64 -65 66 -67 0

-62 63 64 65 -66 -67 0

62 -63 64 65 66 67 0

62 -63 -64 -65 66 67 0

62 -63 -64 -65 -66 -67 0

62 -63 -64 65 -66 67 0

62 -63 -64 65 66 -67 0

62 -63 64 -65 -66 67 0

62 -63 64 -65 66 -67 0

62 -63 64 65 -66 -67 0

62 63 -64 65 66 67 0

62 63 -64 -65 -66 67 0

62 63 -64 -65 66 -67 0

62 63 -64 65 -66 -67 0

62 63 64 -65 66 67 0

62 63 64 -65 -66 -67 0

62 63 64 65 -66 67 0

62 63 64 65 66 -67 0

-67 12 23 0

-67 -12 -23 0

67 -12 23 0

67 12 -23 0

-7 9 13 14 0

-7 -9 -13 14 0

-7 -9 13 -14 0

-7 9 -13 -14 0

7 -9 13 14 0

7 -9 -13 -14 0

7 9 -13 14 0

7 9 13 -14 0

8 -68 0

10 -68 0

12 -68 0

68 -8 -10 -12 0

10 -69 0

12 -69 0

13 -69 0

69 -10 -12 -13 0

8 -70 0

10 -70 0

70 -8 -10 0

10 -71 0

12 -71 0

71 -10 -12 0

12 -72 0



13 -72 0

72 -12 -13 0

-68 69 70 71 72 73 0

-68 -69 -70 71 72 73 0

-68 -69 -70 -71 -72 73 0

-68 -69 -70 -71 72 -73 0

-68 -69 -70 71 -72 -73 0

-68 -69 70 -71 72 73 0

-68 -69 70 -71 -72 -73 0

-68 -69 70 71 -72 73 0

-68 -69 70 71 72 -73 0

-68 69 -70 -71 72 73 0

-68 69 -70 -71 -72 -73 0

-68 69 -70 71 -72 73 0

-68 69 -70 71 72 -73 0

-68 69 70 -71 -72 73 0

-68 69 70 -71 72 -73 0

-68 69 70 71 -72 -73 0

68 -69 70 71 72 73 0

68 -69 -70 -71 72 73 0

68 -69 -70 -71 -72 -73 0

68 -69 -70 71 -72 73 0

68 -69 -70 71 72 -73 0

68 -69 70 -71 -72 73 0

68 -69 70 -71 72 -73 0

68 -69 70 71 -72 -73 0

68 69 -70 71 72 73 0

68 69 -70 -71 -72 73 0

68 69 -70 -71 72 -73 0

68 69 -70 71 -72 -73 0

68 69 70 -71 72 73 0

68 69 70 -71 -72 -73 0

68 69 70 71 -72 73 0

68 69 70 71 72 -73 0

-73 13 24 0

-73 -13 -24 0

73 -13 24 0

73 13 -24 0

-8 10 14 15 0

-8 -10 -14 15 0

-8 -10 14 -15 0

-8 10 -14 -15 0

8 -10 14 15 0

8 -10 -14 -15 0

8 10 -14 15 0



8 10 14 -15 0

-17 0

-18 25 0

18 -25 0

-19 25 0

19 -25 0

-20 0

-21 0

-22 25 0

22 -25 0

-23 25 0

23 -25 0

-24 25 0

24 -25 0



B Crypto1 and Hitag2 Diagrams

Fig. 3. The stream cipher Crypto1



Fig. 4. The stream cipher Hitag2



C Tap Configurations

Fig. 5. Crypto1 Taps

Fig. 6. Hitag2 Taps

Fig. 7. “Left” Taps

Fig. 8. “Mid” Taps

Fig. 9. Left Consecutive Taps

Fig. 10. Mid Consecutive Taps



Fig. 11. Right Consecutive Taps

Fig. 12. “2-2” Taps

Fig. 13. “1-2-1” Taps

Fig. 14. “19-1” Taps

Fig. 15. “10-10” Taps

Fig. 16. Random A Taps

Fig. 17. Random B Taps

Fig. 18. Random C Taps

Fig. 19. Random D Taps

Fig. 20. Random E Taps

Fig. 21. Random F Taps



D Java Program Source Code

import java.util.Random;

import java.util.Scanner;

import java.util.ArrayList;

public class TapConfig{

// Instance variables

private ArrayList<Integer> taps;

private int distScore, diffScore, repScore, distScore1, distScore2;

private String configName;

// Static variables

private static final Integer[] DIST_BASIS1 = {29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48};

private static final Integer[] DIST_BASIS2 = {1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20};

private static final Integer[] DIST_BASIS3 = {14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33};

private static int numTapConfigs = 0;

private static double sumOfTotalScores = 0;

// Tap Configurations

public static final Integer[] RIGHT_CON = {29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48};

public static final Integer[] CRYPTO1 = {10, 12, 14, 16, 18, 20, 22,

24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48};

public static final Integer[] HITAG2 = {2, 3, 5, 6, 8, 12, 14, 15, 17,

21, 23, 26, 28, 29, 31, 33, 34, 43, 44, 46};

public static final Integer[] TWO_TWO = {6, 7, 10, 11, 14, 15, 18, 19,

22, 23, 26, 27, 30, 31, 34, 35, 38, 39, 42, 43};

public static final Integer[] ONE_TWO_ONE = {1, 3, 6, 8, 11, 13, 16,

18, 21, 23, 26, 28, 31, 33, 36, 38, 41, 43, 46, 48};

public static final Integer[] RAND_A = {1, 2, 5, 7, 8, 11, 14, 17, 22,

24, 25, 33, 37, 38, 39, 40, 41, 42, 43, 44};

public static final Integer[] RAND_B = {2, 4, 7, 14, 18, 19, 20, 23, 25,

26, 27, 28, 29, 34, 36, 39, 40, 41, 42, 46};

public static final Integer[] RAND_C = {1, 7, 12, 15, 16, 17, 18, 19,

23, 24, 25, 27, 30, 33, 35, 37, 41, 42, 45, 48};

public static final Integer[] RAND_D = {2, 5, 6, 7, 8, 9, 16, 17, 19,

21, 23, 24, 30, 33, 35, 36, 41, 46, 47, 48};

public static final Integer[] RAND_E = {1, 3, 5, 6, 7, 11, 15, 17, 18,

23, 26, 36, 37, 38, 40, 41, 43, 44, 46, 47};

public static final Integer[] RAND_F = {1, 4, 8, 10, 11, 14, 18, 19, 20,

24, 25, 26, 28, 31, 35, 37, 38, 41, 45, 46};

public static final Integer[] NINETEEN_ONE = {1, 2, 3, 4, 5, 6, 7, 8, 9,



10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 48};

public static final Integer[] TEN_TEN = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21};

// Constructor

public TapConfig(String name, Integer[] tapas){

this.taps = new ArrayList<Integer>(20);

for(int i = 0;i < 20; i++){

this.taps.add(i,tapas[i]);

}

this.configName = name;

numTapConfigs++;

sumOfTotalScores = sumOfTotalScores + totalScore();

}

// Static method

public static Double getAverageScore(){

return TapConfig.sumOfTotalScores / TapConfig.numTapConfigs;

}

// Random Tap Generator

public static Integer[] randTaps(){

ArrayList<Integer> ret = new ArrayList(20);

Integer[] ret2 = new Integer[20];

Random rand = new Random();

Integer entry;

int i = 0;

while(i < 20){

entry = rand.nextInt(47);

if(! ret.contains(entry+1)){

ret.add(i, entry+1);

i++;

}

}

for(int j = 0; j < 20; j++){

ret2[j] = ret.get(j);

}

Sort2.insertionSort(ret2);

return ret2;

}

/** Tap Configuration Subscores **/



public int getDistanceScore(){

distScore1 = 0;

distScore2 = 0;

for(int i = 0; i < 20; i++){

distScore1 = distScore1 + (DIST_BASIS1[i] - taps.get(i));

}

for(int i = 0; i < 20; i++){

distScore2 = distScore2 + (taps.get(i) - DIST_BASIS2[i]);

}

int minimum = Math.min(distScore1, distScore2);

return minimum;

}

public Double getDistStanDev(){

Double distAvg = getDistanceScore()/20.0;

Double distVar = 0.0;

int x;

if(distScore1 < distScore2){

for(int i = 0; i < 20; i++){

x = (DIST_BASIS1[i]-taps.get(i));

distVar = distVar + .05*Math.pow((distAvg-x), 2.0);

}

}

else{

for(int j = 0; j < 20; j++){

x = (taps.get(j) - DIST_BASIS2[j]);

distVar = distVar + .05*Math.pow((distAvg-x), 2.0);

}

}

return Math.sqrt(distVar);

}

public int getDiffusionScore(){

diffScore = 0;

for(int i = 1; i < 5; i++){

for(int j=19; j >=0; j--){

if(taps.contains(taps.get(j)-i)){

diffScore++;

}

}

}

return diffScore;

}

public int getRepetitionScore(){



ArrayList<Integer> f1, f2, f3, f4, f5;

f1 = new ArrayList<Integer>(4);

f2 = new ArrayList<Integer>(4);

f3 = new ArrayList<Integer>(4);

f4 = new ArrayList<Integer>(4);

f5 = new ArrayList<Integer>(4);

for(int i = 0; i < 4; i++){

f1.add(taps.get(i));

f2.add(taps.get(i+4));

f3.add(taps.get(i+8));

f4.add(taps.get(i+12));

f5.add(taps.get(i+16));

}

int f5Score = 0;

for(int j = 0; j < 48; j++){

int f1Num = 0;

int f2Num = 0;

int f3Num = 0;

int f4Num = 0;

int f5Num = 0;

for(int k = 0; k < 4; k++){

if(f5.contains(f5.get(k)-j)){

f5Num++;

}

else if(f4.contains(f5.get(k)-j)){

f4Num++;

}

else if(f3.contains(f5.get(k)-j)){

f3Num++;

}

else if(f2.contains(f5.get(k)-j)){

f2Num++;

}

else if(f1.contains(f5.get(k)-j)){

f1Num++;

}

}

if(f1Num == 1){

f1Num = 0;

}

if(f2Num == 1){

f2Num = 0;

}

if(f3Num == 1){



f3Num = 0;

}

if(f4Num == 1){

f4Num = 0;

}

if(f5Num ==1){

f4Num = 0;

}

f5Score = f5Score + f1Num + f2Num + f3Num + f4Num + f5Num;

}

int f4Score = 0;

for(int j = 0; j < 44; j++){

int f1Num = 0;

int f2Num = 0;

int f3Num = 0;

int f4Num = 0;

for(int k = 0; k < 4; k++){

if(f4.contains(f4.get(k)-j)){

f4Num++;

}

else if(f3.contains(f4.get(k)-j)){

f3Num++;

}

else if(f2.contains(f4.get(k)-j)){

f2Num++;

}

else if(f1.contains(f4.get(k)-j)){

f1Num++;

}

}

if(f1Num == 1){

f1Num = 0;

}

if(f2Num == 1){

f2Num = 0;

}

if(f3Num == 1){

f3Num = 0;

}

if(f4Num == 1){

f4Num = 0;

}

f4Score = f4Score + f1Num + f2Num + f3Num + f4Num;

}



int f3Score = 0;

for(int j = 0; j < 40; j++){{ }

int f1Num = 0;

int f2Num = 0;

int f3Num = 0;

for(int k = 0; k < 4; k++){

if(f3.contains(f3.get(k)-j)){

f3Num++;

}

else if(f2.contains(f3.get(k)-j)){

f2Num++;

}

else if(f1.contains(f3.get(k)-j)){

f1Num++;

}

}

if(f1Num == 1){

f1Num = 0;

}

if(f2Num == 1){

f2Num = 0;

}

if(f3Num == 1){

f3Num = 0;

}

f3Score = f3Score + f1Num + f2Num + f3Num;

}

int f2Score = 0;

for(int j = 0; j < 36; j++){

int f1Num = 0;

int f2Num = 0;

for(int k = 0; k < 4; k++){

if(f2.contains(f2.get(k)-j)){

f2Num++;

}

else if(f1.contains(f2.get(k)-j)){

f1Num++;

}

}

if(f1Num == 1){



f1Num = 0;

}

if(f2Num == 1){

f2Num = 0;

}

f2Score = f2Score + f1Num + f2Num;

}

int f1Score = 0;

for(int j = 0; j < 36; j++){

int f1Num = 0;

for(int k = 0; k < 4; k++){

if(f1.contains(f1.get(k)-j)){

f1Num++;

}

}

if(f1Num == 1){

f1Num = 0;

}

f1Score = f1Score + f1Num;

}

return f5Score+f4Score+f3Score+f2Score+f1Score;

}

public Double spaceCount(){

Integer[] xArray =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

Double xNum = 0.0;

for(int i = 0; i< 19; i++){

xArray[taps.get(i+1)-taps.get(i)-1] =

xArray[taps.get(i+1)-taps.get(i)-1] + 1;

}

for(Integer j: xArray){

if(j != 0){

xNum = xNum + 1.0;

}

}

return xNum;

}

public Double spaceDev(){

int sum = 0;

Double num = 0.0;

for(int i = 0; i< 19; i++){



int x = (taps.get(i+1)-taps.get(i));

if(x != 0){

sum = sum + x;

num = num + 1.0;

}

}

Double avg = sum/num;

Double variance = 0.0;

for(int i = 0; i< 19; i++){

int x = (taps.get(i+1)-taps.get(i));

if(x != 0){

variance = variance+(1.0/num)*Math.pow((x-avg), 2.0);

}

}

return Math.sqrt(variance);

}

public Double spanDev(){

boolean connected = true;

Integer[] spans= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

int i = 0;

int j = 0;

int run = 1;

while((i < 19)){

if((taps.get(i+1) - taps.get(i)) == 1){

run++;

i++;

}

else{

spans[j] = run;

run = 1;

i++;

j++;

}

}

spans[j] = run;

int sum = 0;

Double num = 0.0;

for(Integer span : spans){

if(span != 0){

sum = sum + span;

num = num + 1.0;

}

}

Double avg = sum/num;

Double variance = 0.0;

for(Integer k: spans){

if(k != 0){



variance = variance+(1.0/num)*Math.pow((k - avg),2.0);

}

}

return Math.sqrt(variance);

}

public Double totalScore(){

return 8.05 + (.014 * this.getDistanceScore())

- (.0939 * this.getDiffusionScore())

- (.0081 * this.getRepetitionScore())

+ (.6 * spaceCount() + 1.1 * spaceDev()

-(.573 * spanDev()));

}

/** Display Methods**/

public String toString(){

String str;

str = "====================== \nName: " + configName

+ "\nDistance Score: " + this.getDistanceScore()

+ "\nDiffusion Score: " + this.getDiffusionScore()

+ "\nRepetition Score: " + this.getRepetitionScore()

+ "\nSpacing Count Standard Dev: " + spaceCount()

+ "\nSpace Dev: " + spaceDev() + "\nSpan Standard Dev: "

+ spanDev() + "\nDist Stand Dev: " + getDistStanDev()

+ "\nTotal Score: " + this.totalScore()

+ "\n======================\n";

return str;

}

public String toString2(){

String str;

str = "======================\n[ ";

for(int i = 0; i < 19; i++){

str = str + this.taps.get(i) + ", ";

}

str = str + this.taps.get(19) + "]";

str = str + "\nTotal Score: " + this.totalScore()

+ "\n======================\n";

return str;



}

/** The main test methods**/

// Random Tests

public static void runRandSample(){

Scanner in;

TapConfig rand;

int n;

int x;

double maxVal = 0;

TapConfig maxTaps = new TapConfig("Maximum", TapConfig.randTaps());

ArrayList<TapConfig> maxes = new ArrayList<TapConfig>();

in = new Scanner(System.in);

System.out.print("Enter the number of random

tap configurations you want to test: ");

n = in.nextInt();

System.out.println();

System.out.print("Enter 1 for keeping track, 2 for no: ");

x = in.nextInt();

for(int i = 0; i < n; i++){

String name = "Random " + i;

rand = new TapConfig(name, TapConfig.randTaps());

if(rand.totalScore() > maxVal){

maxTaps = rand;

maxVal = rand.totalScore();

}

if(((i % 100) == 0) && (x == 1)){

maxes.add(maxTaps);

}

if((x == 2) && ((i % 1000) == 0)){

System.out.println((i/((double)n))*100 + " %");

}

}

for(TapConfig m : maxes){

System.out.println(m.totalScore());

}

System.out.println( maxTaps.toString2());

}

// Our basic configs



public static void standardScores(){

TapConfig rightCon = new TapConfig("Right Con", TapConfig.RIGHT_CON);

TapConfig crypto1 = new TapConfig("Crypto1", TapConfig.CRYPTO1);

TapConfig hitag2 = new TapConfig("Hitag2", TapConfig.HITAG2);

TapConfig oneTwoOne = new TapConfig("1-2-1 Taps", TapConfig.ONE_TWO_ONE);

TapConfig twoTwo = new TapConfig("2-2 Taps", TapConfig.TWO_TWO);

TapConfig randA = new TapConfig("Random A", TapConfig.RAND_A);

TapConfig randB = new TapConfig("Random B", TapConfig.RAND_B);

TapConfig randC = new TapConfig("Random C", TapConfig.RAND_C);

TapConfig randD = new TapConfig("Random D", TapConfig.RAND_D);

TapConfig randE = new TapConfig("Random E", TapConfig.RAND_E);

TapConfig randF = new TapConfig("Random F", TapConfig.RAND_F);

TapConfig nineteenOne = new TapConfig("19-1 Taps", TapConfig.NINETEEN_ONE);

TapConfig tenTen = new TapConfig("10-10 Taps", TapConfig.TEN_TEN);

System.out.println(rightCon);

System.out.println(crypto1);

System.out.println(hitag2);

System.out.println(oneTwoOne);

System.out.println(twoTwo);

System.out.println(randA);

System.out.println(randB);

System.out.println(randC);

System.out.println(randD);

System.out.println(randE);

System.out.println(randF);

System.out.println(nineteenOne);

System.out.println(tenTen);

}

}


