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Abstract 

Pathway Analysis, or gene set analysis, is a fairly new and promising approach to 

Genome-Wide Association Studies.  Not only does this method avoid the multiple 

testing penalties associated with SNP-by-SNP analyses, but it also incorporates a-priori 

biological knowledge about the interactions of genes in pathways.  There are many 

sources that produce these sets for implementation in gene set analysis. However, 

these sources all create their sets using different methods, based on varying principles 

and using different underlying algorithms. The importance of the consistency of these 

gene sets cannot be disregarded, as inconsistent sets produce inconsistent 

genotypic/phenotypic associations in gene set analysis.  The goal of this study was to 

compare a number of these commonly used sources of sets to see which produces the 

most consistent sets of genes. Gene expression microarray data was used for this 

evaluation.   

Background 

Genome-Wide Association Studies (GWAS) seeks to identify the genetic components of 

complex diseases.1-4  Since the explosion of popularity in such studies in the last 

decade, many different methods have been proposed to accomplish these endeavors 

efficiently and accurately.  Perhaps one of the most promising methods at our disposal 

thus far is the method of Pathway Analysis.1(p1)  Unlike many other methods that only 

look for genotype-phenotype association at the single SNP level∗ or at the single gene 

level, Pathway Analysis looks for association across biologically related, interconnected 

sets.  These sets begin by associating SNPs to genes, and then by creating related sets 

                                                           
∗ A Single Nucleotide Polymorphism, or SNP, is a single variation in the DNA sequence at a single nucleotide. 
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of genes.  Each of these sets is summarized based on their association, and the 

statistical significance of that association is assessed at each step in the process.5 

One of the most beneficial aspects of Pathway Analysis is that each of the steps 

mentioned above (SNP aggregation, gene aggregation, etc) can be individually 

analyzed and optimized, thereby contributing to the accuracy of the method as a whole.  

This valuable feature provides the motivation for this project: to zoom in on

one step of the analysis and seek to improve it.  Specifically, this research focuses on 

the gene aggregation step, or how genes are grouped together into sets of genes and 

how this affects the overall analysis. 

On an individual gene level, it is difficult to detect a significant connection between the 

gene and a given phenotype, due to the vast size of a genome weakening this 

connection.  Since most mathematical models assume genes show a similar, but weak 

connection with the phenotype, we use methods to aggregate genes, which then create 

a statistically significant connection with the phenotype because the connection is 

strengthened.  If we combine genes in a significant way using previously determined 

biological knowledge, the assumption about the individual connections of genes with the 

phenotype is met.  Our basic goal then, is to test whether we are in fact aggregating 

genes in a significant way.  To achieve this, we measured the correlation in phenotype 

patterns between genes in the same gene set to see if they had consistent effects on 

their expression patterns.      

Ideally, we wish for genes in a gene set to be “consistent”, or for all genes in a gene set 

to be functionally related to one another.  If genes are functionally related to one 

another, we will obtain accurate associations with the phenotype of interest in Pathway 

Analysis.  As an example, suppose I group gene A and gene B together in a gene set 

and suppose I find that gene A has association with the phenotype.  Pathway Analysis 

then, assumes that gene B also has some kind of association with the phenotype, 

because gene A and gene B are functionally related.  If they are in fact not functionally 

related, this process falls apart. This “consistency” between genes in a gene set is 

exactly what we need to test for.      
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Pathway Analysis is a complicated process with much room for variation and error in 

each of the steps.  Though our analysis is only focused on “the gene set step”, there are 

still many factors that could affect the accuracy of phenotype association at the gene set 

level in the human genome.    Because of this complication, it became necessary to find 

a way to simply focus on the methods by which gene sets are created for each source, 

while still controlling for the other factors and more complicated interactions that come 

into play in the human genome.  For this reason, we turned to microbial organisms.   

Because microbial genes have fewer SNPs and there are fewer genes overall, they 

provide us with an excellent comparison to human gene sets in our analysis.  

Surprisingly--and to our advantage--there are many parallels that can be drawn 

between microbial gene sets and human gene sets that can help us to understand 

human gene sets.  First note that the sources of sets we are analyzing use comparable 

methods for both human and microbial gene sets (with the exception of Operons as 

they do not occur in human genes), which is the primary groundwork by which we can 

make this modification. Further, gene expression data is obtained in a similar manner 

on microbial and human genes. This concept is key, as gene expression data acts as 

our main tool of set comparison (gene expression data will be discussed in detail in the 

Materials section). If gene expression data differed, we would have no basis to draw 

parallels between human and microbial sets.  In addition, Pathway Analysis can be 

applied to microbial organisms easily and successfully, making the effects of the gene 

sets on the overall Pathway Analysis a relevant point to discuss, both for those 

interested in the human genome and those interested in the microbial genome.   

Materials 

Set Sources 

When conducting a Pathway Analysis, previously created gene sets that incorporate a 

priori biological information are often used in the process. There are many different set 

sources that are frequently used that produce these gene sets.  All of these set sources 

aggregate gene to create gene sets using various concepts about the interaction of 

genes in a genome.  We chose to evaluate six of these set sources in order to 
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determine which of them creates the most consistent gene sets.  The set sources we 

selected are: The Gene Ontology,6 KEGG (Kyoto Encyclopedia of Genes and 

Genomes),7 Predicted Operons from Microbes Online,8 Scenarios from The SEED, 

Scenario Paths from The SEED, and Subsystems from The SEED.9  A description of 

the principles and processes by which these set sources form their gene sets are given 

below: 

1) The Gene Ontology (GO) - forms gene sets based on similar biological processes, 

molecular functions, and cellular components. Comparisons are evaluated 

independently within each organism.6   

2) Subsystems- use similar methods as Gene Ontology (groups genes by similar 

biological processes, molecular functions, cellular components, etcetera), but also 

groups genes based on similar gene products. Additionally, subsystems use 

comparative genomics for comparable organisms in order to capitalize on cross-

organismal similarities.9 

3) Scenarios- subsets of subsystems in which genes form a chain of connected 

reactions. Scenarios are extremely specified sets not only for these reasons, but also 

because they are strictly metabolic reaction networks that perform no other functions 

other than those involving metabolism.9 

4) Kyoto Encyclopedia of Genes and Genomes (KEGG) - collections of genes 

intertwined by higher-level systematic functions, such as molecular interaction and 

reaction networks.  All genes must be “connected” within a pathway, not just functionally 

related. KEGG Pathways are comparable to a scenario, but are much larger sets. 

KEGG represents their gene sets by using KEGG Pathway maps, such as the one in 

Figure 17: 
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5) Scenario Paths (Paths) - subsets of scenarios (even more fine-tuned subsystems, 

scenarios).  All genes in a path must be connected in terms of their gene products, and 

these connections are only considered a path if they are within a metabolic reaction 

network.  Paths are comparable to a “mini-KEGG pathway”.  That is, looking at the 

KEGG map above, a Path would be a specific set of connected genes within a KEGG 

map. 9   

6) Predicted Operons- by definition, an operon is a cluster of genes that must all be 

contiguous and under the control of the same single regulatory promoter, which 

essentially regulates the transcription of a given gene. Operons are unique to microbial 

organisms and are not found in most multi-cellular organisms.  Microbes Online 

attempts to predict all operons for a given genome by taking into account other 

correlated factors along with contiguity, including: nucleotide distance between two 

genes and other functional categories defined by Microbes Online.8 

Organisms 

Gene sets were collected for every set source across six different microbial organisms.  

The organism names along with the abbreviations used here are as follows: 

Figure 1 
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Staphylococcus aureus (Staph aureus), Escherichia coli (E. coli), Shewanella 

oneidensis (Shewanella), Thermus Thermophilus (Thermus), Bacteroides 

thetaiotaomicron (Bacteroides), and Pseudomonas aeruginosa (Pseudomonas).  

These particular organisms were selected for their biological diversity to allow for more 

general conclusions to be drawn about the consistency of set sources.  A table is given 

below listing the number of total gene sets collected for each set source and each 

organism:   

 

 GO KEGG Operons Paths Scenarios Subsystems Total 
Staph aureus 975 90 522 267 139 360 2353 
Pseudomonas 1170 104 1049 323 191 389 3226 
Shewanella 1034 95 704 259 150 327 2569 
Bacteroides 967 79 1009 235 137 193 2620 
Thermus 853 82 419 251 138 178 1921 
E. coli 1170 98 753 314 192 399 2926 
Total 6169 548 4456 1649 947 1846 15615 

Table 1: Total Number of Sets for Source and Organism 

The important observation to make from the above table is that some set sources 

identify many more sets than other set sources, but a fixed set source generally 

identifies about the same number of sets across all organisms.   

Gene Expression Microarray Data 

Since the ultimate goal of this study is to see how consistent a gene set is, or how 

similar the genes are within a gene set, a tool was needed to provide measures of 

similarity between groups of genes.  The tool we chose to analyze these similarities is 

gene expression microarray data.  Essentially, a gene expression microarray is the 

result of a controlled experiment performed across the genome. This controlled 

experiment analyzes how a given gene reacts to that particular experiment, where this 

reaction is given by a measure of RNA produced per gene.  RNA production is used as 

a measurement of “gene activity” and is used in many contexts to investigate genotype-

phenotype association.  The entire dataset, which consists of thousands of microarrays, 

was produced using Affymetrix GeneChips for each organism, which was generously 

provided by the Many Microbe Microarrays Database (M3D)10 and the Gene Expression 

Omnibus.11  The Affymetrix GeneChips provide raw CEL files, which were then 
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background-corrected, normalized, and summarized using Robust Multichip Averaging.  

The dataset consists of a variety of arrays that seek to target a variety of experimental 

conditions and strains for each organism, in order to better understand the functions 

and processes associated with a given gene.  Below is a table giving the number of 

genes that were analyzed in the microarray data per organism, and the total number of 

microarrays collected and analyzed for that organism: 
 

                                                                    Table 2: Number of Genes and Microarrays per Organism 

Methods 

The gene expression microarray data provides us with our necessary per gene measure 

of activity in order to quantify gene set consistency.  Because the expression data is 

normalized as mentioned above, these measures are the log2 of the raw expression 

data, and typically range from 4 to16.  For two particular fixed genes in a gene set of a 

given organism, we can now look across these hundreds of microarrays for that 

organism and ask: did these two particular genes react similarly to these controlled 

experiments? If the answer is yes, that they do correspond, (ie, they both produce high 

amounts of RNA for certain experiments and low amounts for others), then they are 

related to a similar group of functions that these controlled experiments coincide with. 

The next step is to find a way to statistically determine how similar their reactions really 

were. For this purpose, we calculated a measure of correlation with Pearson’s pair-wise 

r correlation, where r is given by12:          

Organism Number of Genes Number of Microarrays 

Staph aureus 2885 852 

Pseudomonas 5666 176 

Shewanella 4529 245 

Bacteroides 4913 41 

Thermus 2260 407 

E. coli 4468 907 
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In this formula, X is the expression values for the first gene, Y is the expression values 

for the second gene, and n is the total number of expression values measured for both 

genes.  Since the r correlation alone produces a value between -1 and 1, we chose to 

square this r to produce a value from 0 to 1.  We did this because the negative or 

positive sign of r tells you about the direction of the correlation, but we are only 

interested in the magnitude, or how much they are correlated, and not the direction.  

This r2 is the main value we use to establish correlation.  We then find all possible pairs 

of genes in a gene set, which will be �� � when there are � genes in a gene set, and 

similarly calculate all of their pair-wise r2 values, resulting in �� � r2 values for that gene 
set.  From this, we can draw basic statistics for a given gene set to express the overall 

correlation of the gene set as a whole, such as mean and median.  These calculations 

were performed on all gene sets of a given set source, as long as the set had at least 

two members.  These statistics were calculated using custom R scripts13 and with the 

computational help of the Parallel Computing Cluster at Hope College.14  

Statistical Analysis 

I. Set Sizes 

Before we discuss the analysis of the correlation values as calculated above, it is 

necessary to understand more basic and general trends in the data.  Below is a table of 

average set sizes and their corresponding standard deviations, for each set 

source/organism combination: 
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Set Source 
 

GO KEGG Operons Paths Scenarios Subsystems 
 

Organism Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
Staph 
aureus 40.90 120.32 14.87 15.24 3.063 2.079 5.667 3.298 4.475 2.798 7.135 5.996 

Pseudomo
nas 71.78 239.71 24.70 27.89 3.186 2.030 6.096 4.305 5.429 4.339 10.133 9.284 

Shewanella 54.11 164.86 17.43 16.43 3.191 2.465 5.454 3.118 4.834 2.913 8.915 7.493 
Bacteroide

s 58.72 184.85 15.32 11.53 3.401 2.167 6.489 4.025 4.876 3.431 8.000 8.867 

Thermus 32.72 93.27 12.75 11.45 2.970 2.130 4.856 2.832 4.291 2.900 6.778 5.827 
E. coli 56.10 185.54 20.69 24.42 3.200 2.183 5.975 4.143 4.823 3.147 8.681 7.486 

Table 3: Set Sizes-Decomposed by Organisms and Set Source 

 

Notice that some set sources tend to have larger sets on average, while some set 

sources have significantly smaller set sizes on average.  In particular, notice Gene 

Ontology’s (GO) typically extremely large sets and Operons’ typically small sets.  

Roughly speaking, this tells us that set sources create gene sets of varying sizes in 

relation to one another.  We can also see in this table by looking at a fixed set source 

across all organisms that gene sets tend to have approximately the same set sizes.  

This is reassuring for our analysis: it tells us that their methods are producing similarly 

sized gene sets, a hint that the methods are consistent across organisms.  For extra 

statistical support, we can formally test to see if set source and organism have an effect 

on set sizes using Analysis of Variance (ANOVA).15 Essentially, ANOVA is a statistical 

tool which compares differences in means across groups.  Before such an analysis, 

however, there is one more important thing to notice from this table: high mean sets 

sizes correspond to high standard deviations (in particular, GO and KEGG).  Before we 

should proceed using ANOVA, we should transform our data to better meet ANOVA test 

conditions.  For this reason, for the remainder of our analysis we will be using the log10 

of the set sizes.  Here are the results of such an analysis: 
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Sources of 
variability DF Seq SS Adj SS Adj MS F-

statistic 
p-

value 

Set Source 5 1064.938 1011.621 202.324 949.28 0.000 
Org 5 18.444 11.306 2.261 10.61 0.000 
Set 

Source*Org 25 7.456 7.456 0.298 1.40 0.089 

Error 15680 3341.962 3341.962 0.213   
Total 15715 4432.800     

                   Table 4: ANOVA Table for Log(Set Sizes), with Source, Organism, and Source*Organism as Factors of Interest 

S = 0.461666   R-Sq = 24.61%   R-Sq(adj) = 24.44% 
 

Our ANOVA analysis confirms our intuitive observations. By the large F-statistic for set 

source, we now know that there is a lot of variability in set size from set source to set 

source.  ANOVA also produced a significant F-statistic for organism, meaning there is 

also variability on set size due to organism. Notice set source and org are both 

supported by practically 0 p-values.  Our confidence in set source*org interaction is 

much less.  Notice the interaction factor not only has a fairly small F, but also a high p-

value.   

We can also look at the relationship between the total number of sets and the average 

number of genes per set for each set source.  Here is a graph demonstrating this 

relationship (using the log of both set size average and number of sets): 
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To begin, some set sources produce a much larger number of sets for all organisms (ie, 

Gene Ontology).  There are also some sets that produce a fewer number of sets (most 

clearly KEGG).  Others are scattered between 200 and 400 sets per organism, with the 

exception of Operons which produce a wider variety of number of sets per organism.  

However, this is expected, as Operons are directly tied to the size of the genome.  

There is also another interesting trend here: the relationship of number of sets with set 

size average among sources.  For Gene Ontology, this is a clear linear trend (as the 

number of sets increases, so does the size of each individual set).  Others remain more 

constant. For example, even though Operons have the widest variety of the number of 

sets per organism, they are clearly the most constant in set size averages.  This 

information is provided to simply highlight the many differences in how gene sets are 

formed across set sources to better understand the data in later analysis.   

II. Correlation Values: Mean versus Median 

We are now ready to discuss overall results of the correlation values, which were 

obtained as described in the Methods section.  As previously mentioned, we calculated 

both mean and median correlation values for each set per organism, per set source. 

The question then arises, which of these is a better measure of the overall trend in the 

correlation values?  Means can sometimes be misleading, as they are easily pulled 

down by small observations or pulled up by large observations.  Figures 3 and 4 are 

histograms of both the mean and the median correlation values: 
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From these histograms, you can tell that the distributions are roughly the same, and it 

does not appear that the means are skewing the data in any misleading way.  Even 

though these graphs tell us something about their distributions, they tell us nothing 

about how “correlated” the correlation values are. That is, do low mean correlation 

values correspond to low median correlation values and vice-versa? A scatter plot of 

mean versus median can help to answer this question:     

  

  

 

 

 

 

 

 

 

 

 

The regression line of this scatter plot is y = 0.908x + 0.0554, which just about has a 

slope of 1. This tells us that on average, median and mean r2 values for a set produce 

about the same value, or that the median is no better of a measure than the median.  

Since we have established that in this analysis mean and median generate similar 

results, we will proceed using the mean only for the rest of this analysis, for simplicity’s 

sake.     
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III. Correlation by Set Source and Organism 

Now that we have an appropriate measure of our r2 values, we can compare average 

values across all six set sources: 

 

Source Mean SD 

GO 0.41234 0.20310 

KEGG 0.40941 0.18589 

Operons 0.69758 0.21307 

Paths 0.50257 0.21148 

Scenarios 0.49437 0.22831 

Subsystems 0.44452 0.20199 

                                     Table 5: Average Correlation Values by Set Source 

From these very basic statistics, it appears as though Operons tend to have the highest 

r2 values on average by a fairly significant amount.  The next most correlated set source 

appears to be Paths, followed by Scenarios.  The remainder of set sources has 

approximately equal average correlation values, centered near .45.  Also notice the 

standard deviations for each set source, which are controlled and near .2.  This is rather 

expected however, as the response correlation value is forced to be between 0 and 1.  

Here is a more descriptive visual of this information in the form of a box plot: 
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There are two important patterns to observe here.  The first is the skewness of each set 

source. By the elongated right tails and larger right sides of the boxes, we see that 

nearly all set sources are skewed right, which means that most of the observations are 

concentrated on the low end of the correlation scale.  In fact, Operons is the only set 

source for which this pattern does not hold, as they are in fact left-skewed.  Even more 

interesting is the outliers for each of the set sources.  Notice several Gene Ontology 

sets with high correlation values were recognized as outliers in the data, as did a few 

KEGG and Subsystem sets. This means that high correlation values were not expected 

to be in the data for these set sources.  Nevertheless however, it should be noted that 

even though Gene Ontology has typically low correlation values, there are still several 

highly correlated sets. On the other hand, in the case of the Operons the small 

observations were recognized as outliers, which do not follow the expected pattern of 

the data.  This is the only set source that has any outliers on the low end of the 

correlation values.  Overall, this box plot further supports the consistency of Operons.   

We can examine a similar visual of correlation values by organism: 
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The data shows that there is much less variation on correlation by organism.  Most 

organisms have similar typical values, have very similar spreads, and do not have 

outliers.  In fact, Bacteroides seems to be the only organism expressing variation.   

Besides correlation values broken down solely by set source or by organism, we can 

also examine how correlation values are affected by organism-to-organism differences, 

as well as differences by set source.  It is important to not forget organism-to-organism 

variability in the design, as we are still unsure how much our methods differ across 

organisms.  Below is a table showing correlation values decomposed by both set source 

and organism: 

GO KEGG Operons Paths Scenarios Subsystems 
 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Staph aureus 0.408 0.165 0.380 0.153 0.724 0.176 0.568 0.186 0.537 0.212 0.4746 0.181 

Pseudomonas 0.339 0.170 0.343 0.130 0.618 0.226 0.432 0.182 0.421 0.188 0.403 0.178 

Shewanella 0.335 0.162 0.332 0.137 0.663 0.201 0.457 0.209 0.423 0.206 0.377 0.166 

Bacteroides 0.634 0.193 0.682 0.172 0.786 0.218 0.659 0.204 0.703 0.218 0.671 0.225 

Thermus 0.465 0.168 0.440 0.139 0.702 0.212 0.499 0.200 0.492 0.213 0.455 0.187 

E. coli 0.336 0.181 0.336 0.138 0.702 0.171 0.444 0.201 0.445 0.216 0.399 0.182 
Table 6: Correlation Values Decomposed by Organism and Set Source 
 

There are a few interesting things to note from this table.  The first is to notice that our 

previous observation about correlation values and set source still hold consistent when 

broken down by organism.  That is, for a given organism, set sources still seemed to be 

“ranked” similarly, from best set source to poorer set sources.  The second is to notice 

trends in organism-to-organism differences.  For example, it appears that there tends to 

be higher correlation values for organism Bacteroides, as we noted in the box plot 

above.  Reasons for this variation are less obvious.  Most likely, this is due to the 

unusually low number of microarrays analyzed for this particular organism.  Referencing 

Table 2, there were only 41 microarrays, while all other organisms had at least 175.  

There also could be some unexplained variation in the expression data for this 

organism.  Regardless, the main point to observe is that set sources are not perfectly 

consistent across organisms, but how inconsistent they are is still unclear.  
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Now that we have formulated informal inferences about the effects of set source and 

organism on correlation value, we can formally test these inferences using ANOVA.  In 

addition to set source, we will make organism a factor in the design to help to clarify the 

important matter of organism-to-organism variability discussed above.  Below is the 

ANOVA table resulting from this analysis: 

Sources of 
variability DF Seq SS Adj SS Adj MS F-statistic p-value 

Set Source 5 229.35 200.83 40.17 1138.01 0.000 
Org 5 106.58 61.18 12.24 346.67 0.000 
Set 

Source*Org 25 17.45 17.45 .698 19.77 0.000 

Error 15579 549.85 549.85 .035   
Total 15614 903.22     

Table 7: ANOVA Table for Correlation Value, with Source, Org, and Source*Org as Factors of Interest 

 

S = 0.187868   R-Sq = 39.12%   R-Sq(adj) = 38.99% 
 

Our ANOVA analysis confirms our suspicions about the effects of both set source and 

organism on correlation.  By the large F-statistic for set source, we now know that there 

is about 1138 times more variability in correlation value from set source to set source 

than there is within an individual set source.  Similarly, we also know that there is about 

346 times more variability in correlation value from organism-to-organism than there is 

within an individual organism.  There is also grounds to say there is set source*org 

interaction on correlation as well.  The low p-values of our F-statistics further support all 

of these findings. 

IV. Stratification by Set Size 

When it comes to discovering which conditions have an effect on the correlation value 

of a gene set, another important question to ask is: what effect (if any) does set size 

have on correlation?  A reasonable educated guess would be that sets that have fewer 

genes have a higher correlation value, because there are more interactions between 

genes in a large set, causing differences between them. To investigate this theory, we 

started with a simple table of all gene sets showing correlation by set size.  Each set is 

grouped into a range, based on its corresponding set size, and the mean and standard 

deviation of those correlation values was calculated, as shown in Table 8: 
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Size Range Mean SD 

2-5 0.56954 0.26045 

6-10 0.48518 0.19852 

11-20 0.43622 0.16908 

21-40 0.39427 0.15703 

41-60 0.36191 0.15451 

61-80 0.3580 0.1451 

81-120 0.34509 0.13400 

121-160 0.3527 0.1305 

161-250 0.3334 0.1295 

251-350 0.3351 0.1415 

351-450 0.3147 0.1174 

451-550 0.2859 0.1031 

551-650 0.2914 0.0978 

651-1000 0.3224 0.1173 

1001-2000 0.3097 0.1148 

2000+ 0.3052 0.1286 

                                                    Table 8: Correlation Stratified by Set Size 

 

The data behaved as we expected it to and there is a linear, decreasing pattern 

based and set size and r2 value.  However, notice that the highest standard 

deviation out of all of these ranges occurs in set sizes 2 to 5. We must leave open 

the possibility that there is simply much more spread in the group, causing an 

unrepresentatively high mean.  Next, we wondered what happens when we further 

break the set sizes down by set source.  Do all set sources follow the larger 

set/smaller correlation value trend?  We chose to demonstrate this relationship 

graphically, which is shown below.   Recall that the log of the set sizes was used 

instead of the actual set sizes.  For this graphic particularly, the log of the set sizes 

provides a more accurate illustration for informal interpretation across set sources. 
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From this graph, it is less clear if the correlation values differ when broken down by set 

sizes and set source.  Granted, we can see a slight downward trend for all set sources 

but perhaps Operons, but it is not enough to draw firm statistical conclusions.  

Nevertheless, it does appear that Operons remain to be the unusual case out of the set 

sources yet again. Interestingly enough, it appears that as set sizes increase, there may 

be a slight increasing pattern in the correlation values.  A statistical confirmation of 

these visual observations follows.      

 

V. Regression 

Throughout our analyses thus far, we have seen the importance of gene set size and 

the effect it has on correlation.  For instance, we noticed that Gene Ontology sets do not 

seem to be highly correlated, but also are composed of a wide variety of set sizes, 

many of which are massive in comparison to other set sources.  We have also observed 

that Operons tend to have highly correlated sets, but the vast majority of these sets 

have between 2 and 4 genes.  However, we have only informally observed this trend 
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and have not yet statistically tested how significant this influence is.  Regression is the 

ideal tool at our disposal to test this significance.  By using multiple linear regression, 

we are able to see how much set size effects correlation while controlling for set source, 

as well as how much set source effects correlation, while controlling for set size.  We 

can also examine the relationship between organism and set size, and the effects of 

any combination of set source, organism, and set size, as this interaction may also be 

important on correlation values.   Let us reconsider a scatter plot similar to the one 

above, but this time on the same scale and with regression fit lines: 

 

  

 

 

 

 

 

 

This scatter plot is included merely to reinforce the interesting differences between set 

size and correlation between set sources:  Operons is the only set source that has a line 

with a positive slope.  All other set sources have decreasing correlation values, as set 

size increases. With respect to the scatter plot above, Multiple Linear Regression can 

tell us 1) how different the slopes are from line-to-line (ie, set source to set source), and 

2) how different the y-intercepts are from line-to-line. Note however, that since y-

intercepts are where x=0, this is where log(0)=1, or where set size is equal to 1. Recall 

that we are only including set sizes that are greater than or equal to 2. As a result, for 

our purposes the y-intercept does not tell you about the correlation at the smallest set 
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size. Instead, it may be more intuitive to think of the distance between two lines: for a 

fixed set size, how much more correlated is set A than set B?    

We can also investigate the differences due to organism on correlation.  A similar 

scatter plot is below, but this time broken down by organism: 

 

 

 

 

   

 

 

 

 

We can see from this graph that the correlation is inversely proportional to the set size 

for all organisms.  However, Bacteroides is noticeably higher and has a less severe 

slope than the other organisms.  This follows the pattern that we observed earlier in our 

analysis.   

We would now like to incorporate these factors into a multiple linear regression model.  

All possible factors to include in the model are size, set source, organism, size*source, 

size*organism, source*organism, and size*source*organism.  However, before we 

simply throw all of these factors into our regression model, the Extra Sum of Squares F-

Test16 provides us with an elegant way to check to see if a given factor will improve the 

model at all and is worth incorporating.  This test can compare two models at a time, 

given that one of the models is a special case of the other (i.e., one has an additional 

factor).  The initial model had log(Set Size) as the only factor in a basic ANOVA test. 
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Below is a table of the results of this test, applied once for every additional possible 

factor: 

Additional Factor F-statistic r-squared value p-value 

log(set size) 1138.01 10.3% 0.00000 

source 682.33 26.5% 0.00000 

size*source 10.66 26.7% 0.00000 

organism 584.32 38.4% 0.00000 

size*organism 15.06 38.7% 0.00000 

source*organism 17.73 40.4% 0.00000 

size*source*organism 3.399 40.7% 0.00000 

                                    Table 9: Extra SS F-Test Results 

 

Based on our F-statistics, all of these additional factors could contribute significant 

information to the model.  Notice all of the F-statistics are supported by p-values 

� � � ����. However, we should note that for some of the new models, the r-squared 

value does not increase by much, or the model is not covering for much more variability 

than is previously was.  Regardless, because of our F-statistics, we will proceed with all 

factors, but we may ultimately conclude that they are not practically important factors 

and could be excluded with little harm done to the model.  

Since Operons has shown to be the most unusual set source thus far by showing 

evidence of the highest correlation values, we choose it to be our reference group.  This 

will help the reader to contrast set source differences.  We will also choose our 

organism reference to be Bacteroides, since it has shown evidence of being more 

correlated than other organisms as well.  Our model produced the following beta 

coefficients for the given predictors, along with their corresponding T and p-values: 
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�n Value Predictor T p-value 
0 0.95513 Constant 21.55 0.000 
1  0.02052 Log(size) 0.35 0.729 
2  -0.29511 source_go -15.12 0.000 
3  -0.30302 source_kegg -5.23 0.000 
4  -0.21120 source_paths -6.86 0.000 
5  -0.22361 source_sc -5.85 0.000 
6  -0.25228 source_ss -8.25 0.000 
7  -0.03007 size_go -2.00 0.046 
8  -0.02514 size_kegg -1.01 0.312 
9  -0.03076 size_paths -1.46 0.145 

10  -0.02422 size_sc -0.90 0.370 
11  -0.02733 size_ss -1.41 0.158 
12  -0.25434 org_E. Coli -6.19 0.000 
13  -0.20539 org_Staph aureus -5.13 0.000 
14  -0.18932 org_Pseudomonas -4.75 0.000 
15  -0.30893 org_Shewanella -7.32 0.000 
16  -0.22479 org_Thermus -4.69 0.000 
17  0.01113 size_Staph aureus 0.23 0.821 
18  -0.08767 size_Pseudomonas -1.88 0.060 
19  0.02173 size_Shewanella 0.44 0.662 
20  0.01029 size_Thermus 0.17 0.864 
21  -0.01752 size_E. Coli -0.36 0.719 
22  0.01977 go_Staph aureus 0.52 0.607 
23  -0.11092 kegg_Staph aureus -1.30 0.195 
24  -0.02061 op_Staph aureus -0.47 0.640 
25  -0.03354 paths_Staph aureus -0.63 0.531 
26  -0.01784 sc_Staph aureus -0.28 0.781 
27  -0.06514 go_Pseudomonas -1.72 0.085 
28  -0.02025 kegg_Pseudomonas -0.24 0.813 
29  -0.20792 op_Pseudomonas -5.02 0.000 
30  -0.09286 paths_Pseudomonas -1.81 0.070 
31  -0.07515 sc_Pseudomonas -1.28 0.201 
32  0.03026 go_Shewanella 0.75 0.454 
33  -0.00826 kegg_Shewanella -0.09 0.926 
34  -0.01490 op_Shewanella -0.34 0.737 
35  -0.02847 paths_Shewanella -0.51 0.609 
36  0.00837 sc_Shewanella 0.13 0.898 
37  0.03913 go_Bacteroides 0.89 0.372 
38  0.15613 kegg_Bacteroides 1.62 0.105 
39  -0.16938 op_Bacteroides -3.61 0.000 
40  0.10465 paths_Bacteroides 1.79 0.074 
41  0.07313 sc_Bacteroides 1.10 0.272 
42  0.09615 go_Thermus 2.06 0.039 
43  -0.05616 kegg_Thermus -0.61 0.541 
44  0.00441 op_Thermus 0.08 0.933 
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45  -0.03127 paths_Thermus -0.52 0.606 
46  0.01068 sc_Thermus 0.15 0.877 
47  -0.02617 size_go_Staph aureus -0.60 0.550 
48  0.07039 size_kegg_Staph aureus 0.87 0.383 
49  -0.04236 size_op_Staph aureus -0.62 0.538 
50  0.13241 size_paths_Staph aureus 1.91 0.057 
51  0.07384 size_sc_Staph aureus 0.79 0.431 
52  0.07679 size_go_Pseudomonas 1.90 0.057 
53  0.04208 size_kegg_Pseudomonas 0.57 0.571 
54  0.20045 size_op_Pseudomonas 3.37 0.001 
55  0.09501 size_paths_Pseudomonas 1.49 0.135 
56  0.04944 size_sc_Pseudomonas 0.62 0.538 
57  -0.01620 size_go_Shewanella -0.37 0.713 
58  0.01251 size_kegg_Shewanella 0.16 0.877 
59  0.02811 size_op_Shewanella 0.44 0.661 
60  0.10398 size_paths_Shewanella 1.47 0.143 
61  0.00006 size_sc_Shewanella 0.00 0.999 
62  -0.01149 size_go_Bacteroides -0.23 0.819 
63  -0.08141 size_kegg_Bacteroides -0.90 0.366 
64  -0.02105 size_op_Bacteroides -0.32 0.750 
65  -0.21297 size_paths_Bacteroides -2.91 0.004 
66  -0.13337 size_sc_Bacteroides -1.43 0.153 
67  -0.03060 size_go_Thermus -0.55 0.583 
68  0.09875 size_kegg_Thermus 1.08 0.278 
69  -0.10611 size_op_Thermus -1.31 0.192 
70  0.05685 size_paths_Thermus 0.70 0.482 
71  -0.01920 size_sc_Thermus -0.19 0.849 

Table 10: Multiple Linear Regression Results- sc=scenarios, ss=subsystems, op=operons 

Here is a brief description of groupings of � values: 
a) �0: the y-intercept of the reference group, Operons for Bacteroides 

b) �1: the amount of change in correlation values of Operons for Bacteroides, due to 

set size. 

c) �2 through �6:  the effect on correlation due to different set sources 

d) �7 through �11:  the effect of set size on correlation, due to varying sources 

e) � 12 through �16:  the effect on correlation, due to different organisms 

f) �17 through �21:  the effect of set size on correlation, due to different organisms 

g) �22 through �46:  the effect of set source on correlation, due to differences in 

organism 
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h) �47 through �71:  the effect of set size on correlation, due to different set 

source/organism combinations 

 

This regression model is simply too large and complex to dissect every small detail 

riddled within it.  There are a few very important things to observe however, that give us 

some significant insights to the data.  First note the enormous �0 value: this confirms 

that Operons for Bacteroides behaved as expected in the model.  Due to the small F 

and large p-value, �1 tells us there does not appear to be an extremely significant effect 

on correlation due to set size alone for Operons for Bacteroides. We also expected this, 

because there is little variation in Operon set sizes.  Notice all of the beta values for set 

source, as well as organism, are negative.  This confirms all set sources and organisms 

are less correlated than Operons for Bacteroides.  All other beta values seem to still 

have somewhat of a significant effect, but not nearly as strong as those due to organism 

and set sizes alone.  As more factor interactions are added down the list, the general 

trend is that F-statistics get smaller and p-values get larger. We also see that the GO 

term is significant, but almost none of the interactions with GO are significant, which 

indicates GO is the reason for the poor correlation, not the other factors.  We can even 

see that small GO and KEGG sets produce poorly correlated sets, regardless of set 

size.  

 

Initially, we chose Operons as our reference set source because it has shown to be the 

most correlated set source so far.  However, since Operons are of no interest for 

Pathway Analysis on multi-cellular organisms, we will choose other reference set 

sources as well.  Particularly, we use both GO and KEGG separately as reference set 

sources, since they are by far most commonly used in Pathway Analysis and also have 

proven to produce the least correlated sets. Note that the full analysis was conducted 

for both of these references, but we chose to display in the table the set source 

predictors only, in order to focus on the important differences by set source: 
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Value Predictor T p-value 

-0.00791 source_kegg -0.14 0.889 

0.29511 source_op 15.12 0.000 

0.08391 source_paths 3.02 0.003 

0.07150 source_sc 2.00 0.046 

0.04282 source_ss 1.55 0.12 

Table 11: Regression with GO as reference set source 

From this table alone, we can see that after controlling for all other factors, all other set 

sources except for KEGG performed better than Gene Ontology.  Note however, that 

the T is small and the p-value is high for KEGG, indicating there may not have been a 

very strong difference.  Now observe a similar table with KEGG as the reference: 
 

Value Predictor T p-value 

0.00791 source_go 0.14 0.889 

0.30302 source_op 5.23 0.000 

0.09182 source_paths 1.50 0.134 

0.07940 source_sc 1.22 0.224 

0.05073 source_ss 0.83 0.407 

Table 12: Regression with KEGG as reference set source 

Similarly, we see that all other set sources performed better than KEGG, after 

controlling for all other factors.  Once more, we have a small T and a high p-value for 

Gene Ontology, again indicating that Gene Ontology performed only slightly better than 

KEGG.  Overall, our multiple regression analysis answers the question we have been 

hoping to answer: though set size does have somewhat of an effect on correlation, the 

correlation of a gene set is more heavily affected by its set source and organism than it 

is affected by its set size.       

 

VI. Random Sets 

One other way to compare the correlation of sets is to compare them to the correlation 

of random sets.  If a set is highly correlated, there should be some functions or 

processes within the genes that correlate them in some way.  Therefore, a gene set that 
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has a random collection of genes is more likely to have genes that do not perform 

similar functions, so we expect a lower correlation value than a non-random set.  We 

approached this analysis by first creating 1,000 random sets for each set size from 2-

150, sampling from a list of all genes.  Computation time restricted our abilities to create 

random sets for set sizes greater than 150, but this could certainly be executed in future 

analysis. Once all 149,000 random sets were created, we ran them through the same 

analysis as described in the Methods section to calculate the set correlation value, 

using the mean of all pair-wise correlation values.  We then calculated what we will refer 

to as a “p-value” for each gene set.  The formula for the p-value of a gene set A is as 

follows: 

 

� � ���� ! �� "#$%%% 
 

Where N is the number of 1,000 random gene sets of the same size that had a higher 

correlation value than A.  Obviously then, a low p-value indicates a highly correlated set 

and a high p-value indicates a weakly correlated set.  We have included below a 

Cumulative Distribution Function of the p-values, broken down by set source.  Since 

one of the questions we hope to answer through these p-values is whether set 

correlations are better than random, we have also included the p-values of an arbitrary 

random set in the CDF:  
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The first thing to note in this graph is that all sets performed significantly better than 

random, which is promising.  As far as set source to set source correlation differences 

go, this graph further confirms what we have seen so far in our analysis.  We again see 

that Operons are performing the best out of all the set sources.  Nearly 80% of its gene 

sets have a p-value of .05 or lower, while all other set sources have 60%-80% of its 

gene sets with a p-value of .2 or lower.  Following Operons are Paths, Scenarios, 

Subsystems, KEGG, and Gene Ontology, in that order.  We can do a similar 

examination of a CDF, but this time broken down by organism: 

 

 

 

 

 

 

 

 

Once again, we see that all organisms performed better than the arbitrary random set.  

This graph also seems to be consistent with what we have observed thus far.  

Bacteroides had the highest amount of low p-values, followed by two groupings of p-

value ranges of the other organisms.  Again, the importance here is not necessarily 

which organisms are performing the best, as this is not a factor of interest in our study.  

Mainly, we were curious to see how consistent correlation values were across 

organisms overall, as this speaks of the potential for consistency of set source methods 

across organisms.  The analysis again has demonstrated similar results to what we 

have seen previously: correlation is not perfectly consistent across organisms.    
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Conclusions 

Our analysis has provided great evidence of gene set consistency differing across set 

sources.  The importance of these gene set consistencies should not be taken lightly, as 

they are a key step in Pathway Analysis and Gene Set Analysis.  The results have been 

extremely consistent across all statistical tests, graphs, and analyses conducted: 

Operons tend to have the most correlated sets, followed by Paths, Scenarios, and 

Subsystems.  The least correlated sets consistently came from The Gene Ontology and 

KEGG.  The fact that these two set sources had sets with low correlation values is a 

significant result, as they are the most commonly used in Gene Set Analyses.        

Even though Operons, Paths, and Scenarios consistently had high set correlation 

values, it cannot be disregarded that the typical size of these sets were generally 

smaller.  From our multiple linear regression model, we saw that set size does have 

somewhat of an effect on correlation, but not as strong as we initially expected.  Most 

likely, their high correlations values are probably due to the way in which each of these 

gene sets are defined.  All three of these deal with extremely specific genomic 

interactions and pathways, thereby limiting the amount of unrelated genes that may be 

in a single gene set.  The most specified gene sets we looked at were those of 

Operons.  Recall that by the mere definition of an Operon, all genes must not only be 

contiguous, but also be under the control of a single regulatory promoter.  Operons 

were the only sets that applied to microbial organisms only, which helps to explain their 

simplistic role.  It is logical then, to have obtained generally higher correlation values for 

these specified sets.   

Though these set sources do produce highly correlated sets, there could be some 

potential downfalls to using them, depending on the analysis they are desired for.  One 

of the drawbacks of these specified sets is simply that they may not apply to all Gene 

Set Analyses.  For example, recall that Scenarios are strictly metabolic reaction 

networks. If a phenotype of interest in a Gene Set Analysis has nothing to do with 

metabolism, Scenarios are of no help.  Though they have proven to be less correlated, 

Gene Ontology and KEGG Pathways have a wide-variety of sets, covering many 
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different processes and functions in the genome.  Gene Ontology sets should be used 

with particular caution however, as they proved to be erratic in their set correlations in 

this analysis.  Though there were numerous sets with high correlation values, a typical 

Gene Ontology set is less correlated than desired.  Ultimately, set source choice should 

be determined on a case-by-case basis specific to the objectives of the analysis.   

 Future Work 

In order to better understand the organism-to-organism variation on correlation we 

detected, it is desirable to increase the number of organisms these set sources were 

collected on.  We believe the specified processes of Operons, Scenarios, and Paths is 

the main reason for their notably high correlation values, yet we have little evidence to 

support this claim.  In the future, we would like to reduce other sets down so they are 

more similar in function to these set sources to see how they perform.  Mainly, we are 

interested in how correlated gene sets would be if they were reduced down to only 

genes that perform metabolic functions, so they could be better compared to Scenarios.  

We would also like to expand our analysis with p-values to include larger set sizes.   
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