Measurements of Finite Dust Temperature Effects in the Dispersion Relation of the Dust Acoustic Wave

> Senior Honors Thesis April 22, 2009 Erica Snipes

Outline

- What is a plasma?
- What is a dusty plasma?
- Previous work with dust temperature and Dust Acoustic Wave
- Experimental set up
- Experimental methodology
- Results
- Future Work

Solid

Increasing Energy

Organized Strong intermolecular bonding Coulombic forces Short range

Liquid

Increasing Energy

Loosely organized Collisions and weak intermolecular forces Weak coulombic forces Short range

Increasing Energy

No organization Collisions only Local interaction only

Plasma

No organization Collisions and electromagnetic forces Local and long range

Examples

Dusty Plasma

 Dust particle moves through the plasma, collects ions and electrons from the surrounding plasma - acquires a net charge.

$$I_{\text{total}} = I_{\text{electron}} + I_{\text{ion}} + I_{\text{see}} + I_{\text{thermionic}} + I_{\text{hv}} = 0$$

Charge-to-mass ratio

Why are they interesting?

• They're prominent in the universe.

- Example of a complex, self-organized non-linear system that allows for direct visualization on the kinetic level via light scattering that provides a test bed for a wide range of phenomena.
- Relatively low charge to mass ratio
 - Introduces new collective phenomena (e.g., wave modes such as the dust-acoustic and ion-acoustic wave)
 - Relatively long time scales for phenomena

Dusty Plasma Examples

Why are they interesting?

- They're prominent in the universe.
- Example of a complex, self-organized non-linear system that allows for direct visualization on the kinetic level via light scattering that provides a test bed for a wide range of phenomena.
- Relatively low charge to mass ratio
 - Introduces new collective phenomena (*e.g.*, wave modes such as the dust-acoustic and ion-acoustic wave)
 - Relatively long time scales for phenomena

Mach Cone

- Dust particles arranged in a monolayer, with a few particles_{QE} underneath.
- Disturbance of lower layer dust particles moving at supersonic speeds compared to the natural dust speed.
- Measuring opening angle tells information about size of dust particle creating cone.
- Expected to occur in Saturn's rings, could help determine size of dust in rings.

Microgravity

- Can neglect effect of Earth's gravity. Similar to eliminating first order terms
- Other smaller forces are able to be observed.
- Parabolic air flight
- International Space Station -
- Instability in center of plasma causes higher ionization of atoms, resulting in ions streaming out of void, pushing dust particles away.
- Dynamic equilibrium reached with charged dust pushing back in.

Why are they interesting?

- They're prominent in the universe.
- Example of a complex, self-organized non-linear system that allows for direct visualization on the kinetic level via light scattering that provides a test bed for a wide range of phenomena.
- Relatively low charge to mass ratio
 - Introduces new collective phenomena (*e.g.*, wave modes such as the dust-acoustic and ion-acoustic wave)
 - Relatively long time scales for phenomena

Dust Acoustic Wave

- Low frequency, compressional mode of the charged microparticle component.
- Propagation involves dynamics of heavy particles with small charge-to-mass ratios.
- Moves on the order of a few cm/s. Frequencies on order of Hz.

Previous Work

[1] C. Thompson, A. Barkan, N. DÕAngeo, and R. L. Merlino, Phys. Plasmas 4, 2331 (1997).

[2] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007).

[3] J. D. Williams, E. Thomas, Jr., and L. Marcus, Phys Plasmas 15, 043704 (2008).

[4] T.Trottenberg, D. Block, and A. Piel, Phys. Plasmas 15, 042105 (2006).

[5] S. Ratynskaia, S. Khrapak, A. Zobnin, M. H. Thoma, M. Kretschmer, A. Usachev, V. Yaroshenko,

R. A. Quinn, G. E. Morfill, O. Petrov, and V. Fortov, Phys. Rev. Lett. 93, 085001

- Examining the condition necessary for the onset of the dust acoustic wave
- Theory accurately predicted the threshold condition, if the dust temperature was ~1/40 eV.

DPD

- Dispersion relationship for a horizontally propagating wave was measured by modulating the discharge current
- The temperature was found by fitting the measured dispersion relation to a a fluid model for the wave mode.

- Dispersion relationship for a vertically propagating wave was measured by modulating the discharge current
- The temperature was found by fitting the measured dispersion relation to a a fluid model for the wave mode.

Matilda II

- Dispersion relationship for a horizontally propagating wave was measured by modulating the discharge current
- The temperature was found by fitting the measured dispersion relation to a a kinetic model for the wave mode.

Procedure

- Create a cloud containing a natural wave over a range of pressures
 - Accomplished for neutral pressures ranging from 50 to 120 mTorr
- Drive wave by modulating current
 - Capable of driving the wave mode over a range of neutral pressures, from 50 to 120 mTorr
- Measure dispersion relation
 - Measured for neutral pressures ranging from 55 mTorr to 70 mTorr
- Fit dispersion relation to extract temperature
 - Completed for p = 64 mTorr

Generate the natural wave

Experimental Set Up

- Wittenberg University DUsty Plasma Experiment (WUDUPE)
 - 8 in Conflat Tee
 - Base Pressure
 - ~ 8 mTorr
- Experimental Conditions
 - DC discharge plasma
 - Argon gas
 - 50-120 mTorr
 - Silica spheres
 - d = 3±1 µm
 - m ≈ 31 pg

Experimental Sketch

Driving the wave

Driving

- Apply a ripple to the discharge current (0.185 - 0.3 mA) at desired frequency (9≤f≤25 Hz)
- Couples to natural wave mode
- Take 600 image sequences at 30fps

Measure dispersion relation

Finding Wavelengths

Calibration

Fourier Transform

Experimental Parameters

Dust	Experimental	Plasma
Parameters	Parameters	Parameters
$r_{d} = 1.5 \times 10^{-6} \text{ m}$ $\rho_{d} \sim 2500 \text{ kg/m}^{3}$ $m_{d} = 3.5 \times 10^{-14} \text{ kg}$ $n_{d} = 3.03 \times 10^{10} \text{ m}^{-3}$ $Z_{d} \sim 6750 \text{ eV}$	$I_{discharge} = 1.185 \text{ mA}$ $I_{P-P, \text{modulation}} = 0.24 \text{ mA}$ P = 64 mTorr	n ~ 1.35 x 10 ¹⁴ m ⁻³ T _i ~ 0.025 eV T _e ~ 3 eV $ E = 140^{V}/_{m}$

Pressure = 64 mTorr

Fit the dispersion relations

Theory

Dispersion relation used in the work of Williams
 et. al.:
 Ion term
 Electron term

Dust term

• Where is the dust temperature dependence?

$$v_{td} = \sqrt{\frac{k_B T_D}{m_d}}$$

Dispersion Relation With Fit

Limitations

- To model the measured dispersion relation, fluid model was used.
 - breaks down at shorter wavelengths (*i.e.*, longer wavenumbers), particularly at smaller values of the dust temperature
 - increasing role of collisions at higher neutral pressures can also limit the validity of the model.
- The charge (Z_d) computed using OML theory tends to be larger than observed in experiment particularly at higher values of neutral pressure.
 - A reduced charge results in a smaller slope in the calculated dispersion relation and requires an even larger value of the dust kinetic temperature to match the experimental measurements.

Results

Conclusions

- Create a cloud containing a natural wave over a range of pressures
 - Done for pressures ranging from 50 mTorr to 120 mTorr
- Drive wave by modulating current
 - Driving for pressures ranging from 50 mTorr to 120 mTorr
- Measure dispersion relation
 - Measured for pressures ranging from 55 mTorr to 70 mTorr
- Fit dispersion relation to extract temperature
 Fit for 64 mTorr

Other Pressures

Acknowledgements

- Dr. Andrew Zwicker
- Dr. Jeremiah Williams

Modified Dispersion Relation

$$1 - \frac{\omega_{pi}^{2}}{(\omega - ku_{io})(\omega - ku_{io} + iv_{i}^{eff}) - k^{2}v_{ti}^{2}} - \frac{\omega_{pe}^{2}}{(\omega + ku_{eo})(\omega + ku_{eo} + iv_{en}) - k^{2}v_{te}^{2}} - \frac{\omega_{pd}^{2}}{\omega(\omega + iv_{dn}) - k^{2}v_{td}^{2}} = 0$$

where

$$u_{\alpha 0} = \frac{q_{\alpha} E_{0}}{m_{\alpha} v_{\alpha n}} \qquad V_{t\alpha} = \left(\frac{k_{B} T_{\alpha}}{m_{\alpha}}\right)^{\frac{1}{2}} \qquad \omega_{p\alpha} = \left(\frac{n_{\alpha} q_{\alpha}^{2}}{\varepsilon_{0} m_{\alpha}}\right)^{\frac{1}{2}} \qquad v_{en} = n_{n} \sigma_{en} v_{te} \qquad v_{dn} = \frac{8\sqrt{2\pi}}{3} \left(1 + \frac{\pi}{8}\right) \frac{r_{d}^{2} n_{n} m_{n} v_{tn}}{m_{d}}$$

$$v_{i}^{eff} = v_{in} + v_{id} = n_{n}\sigma_{in}v_{ti} + \frac{m_{d}n_{d}}{m_{i}n_{io}} \frac{8\sqrt{2\pi}}{3} \left(1 + \frac{\pi}{8}\right) \frac{r_{d}^{2}n_{io}m_{i}v_{ti}}{m_{d}} \left(1 + \frac{\beta_{T}\lambda_{D}}{2r_{d}} + \left(\frac{\beta_{T}\lambda_{D}}{2r_{d}}\right)^{2}\Lambda\right)$$

$$\lambda_{D} = \frac{\lambda_{De} \lambda_{Di}}{\sqrt{\lambda_{De}^{2} + \lambda_{Di}^{2}}} \qquad \lambda_{D\alpha} = \sqrt{\frac{\varepsilon_{o} T_{\alpha}}{n_{\alpha o} q_{e}}} \qquad \beta_{T} = \frac{Z_{d} q_{e}}{4\pi\varepsilon_{o} \lambda_{D} T_{i}} \qquad \Lambda = \int_{0}^{\infty} \exp\{-x\} \ln\left\{\frac{2x + \beta_{T}}{2r_{d} x + \beta_{T}}\right\} dx$$

- [5] R. L. Merlino and N. D'Angelo, Phys. Plasmas, **12**, 054504 (2005).
- [6] S. Ratynskaia, et. al., Phys. Rev. Letters, **93**, 085001 (2004).

Probe Measurements

OML Reduced Charge

