Solving the Bioheat Equation for Transcutaneous Recharging of a Medical Device Using Electric Fields

Susannah Engdahl

Senior Seminar Presentation April 24, 2013

Electrophysiology

- The study of the body's electric activity
 Can be small-scale (individual cells) or large-scale (entire organs)
- Electrophysiology often plays an important role in medical diagnostic procedures
 Ex: ECG, EEG, EMG
- Signals often recorded by placing a series of electrodes on the surface of a patient's skin
 - Not always a practical approach—long-term collection of data may be required

A Possible Solution

- A subcutaneous (under the skin) recording device could remain in place semi-permanently
 - Device may be implanted almost anywhere in a minor surgical procedure

Schematic of proposed device

Figure created by Zachary Abzug

Transcutaneous Recharging

- Most implanted devices recharged via magnetic fields—not feasible for this device
- Instead, induce high frequency electric field using external source and sink electrodes

Upholding Medical Standards

- Problem with recharging via electric fields: current passing through tissue can cause thermal damage (Joule heating)
 - A temperature increase ≤ 2 °C is within medical standards
- Previous work: perform finite element analysis to investigate expected temperature increase

Project Objective

- Derive a closed-form solution for the anticipated temperature increase
 - Primary motivation: improved understanding of physical parameters on temperature increase

The "Extended" Bioheat Equation $\rho C \frac{\partial T}{\partial t} = k \nabla^2 T + \rho_b C_b \omega_b (T_b - T) + Q_{met} + J \cdot E$ 1 2 3

- <u>1</u> <u>The heat equation</u>: describes variation of temperature in a region as a function of time
- Pennes' extension to the heat equation: accounts for heat transfer due to perfusion (blood flow) and metabolic heat production
- <u>3</u> <u>Source term</u>: accounts for heating due to power dissipation in tissue

Power Dissipation

 Calculate the work done by electromagnetic forces on a charge Q moving some infinitesimal distance dl:

$$dW = F \cdot dl = Q(E + v \times B) \cdot vdt$$

 $dW = QE \cdot vdt$

- Make the substitutions $Q = \int_{v} \rho d\tau$ and $J = \rho v$
- Rate at which work is done on all charges in a volume: $\frac{dW}{dt} = \int_{V} (J \cdot E) d\tau$
- Therefore, *I E* is the work done on a charge per unit volume per unit time

Simplifying the Bioheat Equation

Must make several simplifications

$$\rho C \frac{\partial T}{\partial t} = k \nabla^2 T + \rho_b C_b \omega_b (T_b - T) + Q_{met} + J \cdot E$$

• Steady-state solution($\frac{\partial T}{\partial t} = 0$)

- Ignore perfusion($\omega_b = 0$)
- Ignore metabolic heat $production(Q_{met} = 0)$
- Final equation to solve:

$$\nabla^2 T = -\frac{1}{k} (\boldsymbol{J} \cdot \boldsymbol{E})$$

A Previous Solution

- Our method of solving the bioheat equation is similar to a solution given by Elwassif et al. [1]
 - Begin by relating the source term to the gradient of the electric potential

 $\boldsymbol{J} \cdot \boldsymbol{E} = \sigma \boldsymbol{E} \cdot \boldsymbol{E} = -\sigma \boldsymbol{\nabla} \boldsymbol{V} \cdot - \boldsymbol{\nabla} \boldsymbol{V} = \sigma |\boldsymbol{\nabla} \boldsymbol{V}| |\boldsymbol{\nabla} \boldsymbol{V}| \cos\theta = \sigma |\boldsymbol{\nabla} \boldsymbol{V}|^2$

Geometric Considerations

- Treat electrode as a current-producing sphere in an infinite homogeneous and isotropic resistive material
- Second electrode is at infinity (V=0)

Spherical coordinate system (image from Wikipedia)

Spherical electrode within infinite medium

A Solution in Spherical Coordinates

Write bioheat equation in spherical coordinates
Ignore θ and φ dependence due to geometry

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial T}{\partial r}\right) = -\frac{\sigma}{k}|\nabla V|^2$$

• Must find an expression for the electric potential by solving Laplace's equation

Solving Laplace's Equation

- Laplace's equation is $\nabla^2 V = 0$
 - Write in spherical coordinates: $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) = 0$

• Multiply through by
$$r^2$$
: $\frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) = 0$

- Integrate twice with respect to r: $V(r) = -\frac{A}{r} + B$
- Since zero potential at infinity, $B=0: V(r) = -\frac{A}{r}$

Solving Laplace's Equation

- To determine A, consider a point source of current in an infinite, homogeneous, isotropic medium.
 - The current density is: $I = \frac{I}{4\pi r^2} \hat{r}$

• Since
$$I = \sigma E = -\sigma \nabla V$$
, the potential is:
 $\nabla V = -\frac{I}{4\pi\sigma r^2} \hat{r} \longrightarrow \frac{dV}{dr} = -\frac{I}{4\pi\sigma r^2} \longrightarrow V(r) = \frac{I}{4\pi\sigma r}$
• Compare to $V(r) = -\frac{A}{r} \longrightarrow A = -\frac{I}{4\pi\sigma}$

Solving the Bioheat Equation

• Plug solution for potential into bioheat equation:

• Make substitutions for clarity:

$$x^4y'' + 2x^3y' = c$$

Solving the Bioheat Equation

• The result is a second-order, linear, nonhomogeneous differential equation

$$x^2y'' + 2xy' = \frac{c}{x^2}$$

• The general solution to this form of DE is

The Complimentary Function

- The homogeneous case is: $x^2y'' + 2xy' = 0$
- This is a Cauchy-Euler equation, so the solution is of the form y = x^m
- Plug in y' and y'' to the homogeneous case and solve for m:

$$x^{2}m(m-1)x^{m-2} + 2xmx^{m-1} = 0$$

 $m = 0$ $m = -1$

• Since $y = x^m$, the complimentary function is given by: $y_c = c_1 y_1 + c_2 y_2$ $y_c = \alpha x^0 + \beta x^{-1}$

$$y_c = \alpha x^0 + \beta x^-$$
$$y_c = \alpha + \frac{\beta}{x}$$

The Particular Solution

• To use variation of parameters, rewrite as:

$$y'' + \frac{2}{x}y' = \frac{c}{x^4}$$

• The solution is given by $y_p = u_1y_1 + u_2y_2$, where y_1 and y_2 are from the complimentary function and

$$u_{1} = \int u_{1}' = \int \frac{W_{1}}{W} \qquad u_{2} = \int u_{2}' = \int \frac{W_{2}}{W} \qquad W = \begin{vmatrix} y_{1} & y_{2} \\ y_{1}' & y_{2}' \end{vmatrix}$$
$$W_{1} = \begin{vmatrix} 0 & y_{2} \\ f(x) & y_{2}' \end{vmatrix} \qquad W_{2} = \begin{vmatrix} y_{1} & 0 \\ y_{1}' & f(x) \end{vmatrix} \qquad f(x) = \frac{c}{x^{4}}$$
$$\int y_{p} = \frac{c}{2x^{2}}$$

The General Solution

• The general solution is the sum of the complimentary function and the particular solution: $v = v_1 + v_2 = \alpha + \frac{\beta}{2} + \frac{c}{2}$

$$y = y_c + y_p = \alpha + \frac{r}{x} + \frac{1}{2x^2}$$
$$T(r) = \alpha + \frac{\beta}{r} + \frac{c}{2r^2}$$
$$T(r) = \alpha + \frac{\beta}{r} - \left(\frac{I}{4\pi}\right)^2 \frac{1}{2k\sigma r^2}$$

 Plugging this back into the bioheat equation verifies that it is a solution

The General Solution

• The solution is also valid in terms of units

Quantity	Unit
Ι	А
k	A/V*m
σ	V*A/m*K
α	K
β	K*m

• Need to determine α and β

Determining a

- Assume the tissue is unaffected by heating at an infinite distance from the electrode
 - As $r \to \infty$, $T(r) \to 310.15$ K (body temperature)

$$T(r) = \alpha + \frac{\beta}{r} - \left(\frac{l}{4\pi}\right)^2 \frac{1}{2k\sigma r^2} \implies \alpha = 310.15 \text{ K}$$

$$T(r) = 310.15 + \frac{\beta}{r} - \left(\frac{l}{4\pi}\right)^2 \frac{1}{2k\sigma r^2}$$

Determining B

- To determine a numeric value for β, we will need another boundary condition
 - Allow heat to exit system (otherwise temperature will rise indefinitely)
 - Assume heat cannot leave system at r=r_o
 - Use Fourier's Law: $q = -k\nabla T$ (q=local heat flux)
 - If no heat can flow at $r=r_0$, then:

$$0 = VT$$
$$0 = -\frac{\beta}{r^2} - \frac{c}{r^3}$$
$$\beta = \left(\frac{l}{4\pi}\right)^2 \frac{1}{k\sigma r_0}$$

Determining B

• The solution for temperature is:

Sensitivity to r₀

- Behavior of solution is highly dependent on r_o

Future Work

- What is the *physical* meaning of the solution?
- The temperature distribution is

$$T(r) = 310.15 + \left(\frac{l}{4\pi}\right)^2 \frac{1}{k\sigma r_0} \frac{1}{r} - \left(\frac{l}{4\pi}\right)^2 \frac{1}{2k\sigma r^2}$$

or
$$T(r) = 310.15 + \frac{A}{r_0 r} - \frac{A}{2r^2} \quad (\text{where } A = \left(\frac{l}{4\pi}\right)^2 \frac{1}{k\sigma}$$

• What does it mean to have two similar terms competing?

Conclusions

- Recharging a subcutaneous medical device using electric fields can increase tissue temperature
- We show that the steady-state temperature distribution is given by $T(r) = 310.15 + \frac{\beta}{r} \left(\frac{l}{4\pi}\right)^2 \frac{1}{2k\sigma r^2}$
- Future work: investigate how physical parameters influence temperature increase

Acknowledgments

- Wittenberg University
 - Dr. Daniel Fleisch
 - Dr. Elizabeth George
 - Dr. Adam Parker
- Duke University
 - Tom Jochum
 - Zachary Abzug
 - Dr. Patrick Wolf

References

[1] Elwassif, Maged M., Qingjun Kong, Maribel Vazquez, and Marom Bikson, "Bio-heat transfer model of deep brain stimulation-induced temperature changes," *J. Neural Eng.* **3**, 306-315, Nov. 2006

[2] Griffiths, David J. "Conservation Laws." *Introduction to Electrodynamics*. Upper Saddle River, NJ: Prentice Hall, 1999. 345-46. Print.

[3] Malmivuo, Jaakko and Robert Plonsey. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. New York: Oxford University Press, 1995. Bioelectromagnetism. N.p., n.d. Web. 2 April 2012. http://www.bem.fi/book/index.htm.

[4] Wissler, Eugene H., "Pennes' 1948 paper revisited," *J. Appl. Physiol.* **85**, 35-41, 1998

Questions?

Extra Slides

Transcutaneous Recharging

 Most implanted devices recharged via magnetic fields—not feasible for this device

The Heat Equation

• The heat equation describes the threedimensional variation of temperature in a region as a function of time

$$\rho C \frac{\partial T}{\partial t} = k \nabla^2 T$$

ρ = density C = specific heat k = thermal conductivity

• Not a complete model of heat transfer in biological situations due to perfusion (blood flow)

The Bioheat Equation

- The rate of heat transfer between blood and tissue is proportional to:
 - The volumetric perfusion rate
 - The difference between the arterial blood temperature and the local temperature
- Also add term (Q_{met}) to account for metabolic heat production
- The bioheat equation is:

$$\rho C \frac{\partial T}{\partial t} = k \nabla^2 T + \rho_b C_b \omega_b (T_b - T) + Q_{met}$$

 $\begin{array}{ll} \rho_b = density \ of \ blood \\ C_b = specific \ heat \ of \ blood \\ T_b = temperature \ of \ blood \end{array} \qquad \begin{array}{ll} \omega_b = perfusion \ rate \ per \ unit \ volume \ of \ tissue \\ T = local \ tissue \ temperature \end{array}$

A Solution in Cylindrical Coordinates

Cylindrical coordinate system (image from uic.edu)

• Wrote Laplacian in cylindrical coordinates, ignoring φ and z dependence due to geometry $\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) = -\frac{\sigma}{k}|\nabla V|^2$

A Solution in Cylindrical Coordinates

- For our analysis, model head as infinitely wide and deep homogeneous resistive material
- Place one electrode on surface (V=V_{applied}) and one electrode at infinity (V=0)

A Solution in Cylindrical Coordinates

- It's acceptable to ignore ϕ dependence in our situation because of the axial symmetry
- Problem: we cannot ignore *z* dependence

Determining B - Approach #1

- Want to know how the temperature behaves at the electrode's surface $(r=r_0)$
 - Requires knowing I, σ, k, r_o, and T_o (the temperature at the electrode's surface)
 - $\ ^{\rm o}$ Choose representative values for I, $\sigma,$ k, and r_o
 - Parameterize β based on selected values T_o

• Solve for
$$\beta$$
 at $r_0: \left(T_0 - 310.15 + \left(\frac{I}{4\pi}\right)^2 \frac{1}{2k\sigma r_0^2}\right) r_0 = \beta$

The solution for temperature:

$$T(r) = 310.15 + \left(T_0 - 310.15 + \left(\frac{l}{4\pi}\right)^2 \frac{1}{2k\sigma r_0^2}\right) \frac{r_0}{r} - \left(\frac{l}{4\pi}\right)^2 \frac{1}{2k\sigma r^2}$$

Determining B - Approach #1

 $\sigma = 0.327 \text{ A/V*m}, \text{ k} = 0.565 \text{ W/m*K}, \text{ r}_{o} = 0.635 \text{ mm}).$

Determining B - Approach #1

A plot of temperature vs. radial distance from electrode (I = 11.7 mA, σ = 0.327 A/V*m, k = 0.565 W/m*K, r_o = 0.635 mm).

Temperature Peak

- If $\boldsymbol{\beta}$ is a smaller value, we see an initial peak in temperature
- Remember solution is of the form: $T(r) = \alpha + \frac{\beta}{r} + \frac{c}{2r^2}$

Temperature Peak

- Would like to account for the peak in temperature
- Remember solution is of the form: $T(r) = \alpha + \frac{\beta}{r} + \frac{c}{2r^2}$

