Buck Creek Flow Analysis Andy Hoffman

Outline

- Introduction-Low head dam dangers
- Supercritical/Subcritical
- Froude Number-Hydraulic jumps
- Previous Work
- HEC-RAS
- Energy Equation
- Historical/Recent data
- Results
- Conclusion

Introduction

 Low head dam : small overflow dam used to alter the flow characteristics of a river or stream

Dangers:
Drowning
Alter
Ecosystem

Froude Number

● Froude Number→

- U = Velocity of flow
- g = Acceleration of gravity
- h = Depth of flow relative to the channel bottom
- \sqrt{gh} = Wave velocity

Supercritical vs. Subcritical flow

- Is the Froude number > or < than 1?
 - Fr>1 = Supercritical
 - Fr<1 = Subcritical
- Supercritical → When flow velocity is greater than wave velocity
- Hydraulic Jump→ Occurs when a flow at high velocity discharges into a zone that can't sustain that high velocity.

Hydraulic Jumps

TABLE 10.3 Classification of Hydraulic Jumps (Ref. 12)

$\mathbf{Fr_1}$	y_2/y_1	Classification	Sketch
<1	1	Jump impossible	\bigvee \downarrow V_1 $V_2 = V_1$
1 to 1.7	1 to 2.0	Standing wave or undulant jump	
1.7 to 2.5	2.0 to 3.1	Weak jump	
2.5 to 4.5	3.1 to 5.9	Oscillating jump	2,2,2
4.5 to 9.0	5.9 to 12	Stable, well-balanced steady jump; insensitive to downstream conditions	277
>9.0	>12	Rough, somewhat intermittent strong jump	$p \rightarrow t$

Previous Work

My Uses of HEC-RAS

Modeling and Simulation

What is HEC-RAS?

- Hydrologic Engineering Center's River Analysis System
 - Steady/Unsteady flow hydraulics
 - Sediment transports/mobile bed compositions
 - Water temperature modeling

Cross Sectioning

- Considering steady flow
- Areas of interest/change

Cross Sections (cont.)

Individual Cross Sections

Sectional water levels → Flooding

Energy Diagram

Chapter 2- Theoretical Basis for One-Dimensional Flow Calculations

Results

Modeled Stage vs. Discharge plot
Recent/Historical Data
The "Kink"
Froude # Profile Plots

• Hydraulic Jumps

Results (cont.)

Stage vs. Discharge

Recent Data (Scaled)

Stage Discharge Rating Curve for Buck Creek at the Plum Street Gaging

Verification

The "kink" in the curve: At about 350 cfs

General Profile Plot

Determine position of possible hydraulic jumps

General Profile Plot (cont.)

375 cfs

650 cfs

Hydraulic Jumps

TABLE 10.3

Classification of Hydraulic Jumps (Ref. 12)

$\mathbf{Fr_1}$	y_2/y_1	Classification	Sketch
<1	1	Jump impossible	\bigvee V_1 $V_2 = V_1$
1 to 1.7	1 to 2.0	Standing wave or undulant jump	
1.7 to 2.5	2.0 to 3.1	Weak jump	
2.5 to 4.5	3.1 to 5.9	Oscillating jump	2,2,2
4.5 to 9.0	5.9 to 12	Stable, well-balanced steady jump; insensitive to downstream conditions	377
>9.0	>12	Rough, somewhat intermittent strong jump	

- ? ·

Hydraulic Jumps (cont.)

50 cfs

650 cfs

Results (cont.)

Using our model we are able to verify a curve of Buck Creek's Stage vs. Discharge.
We are able to locate points of possible

hydraulic jumps at any different flow rate.

Future Work

Compare actual flow rates upstream vs. stage values to check future data collected by the Geology Department
 Use this curve to demonstrate Buck Creek's flow conditions online for recreational users.

Conclusion

- Using the existing model to obtain a group of curves to verify Buck Creek's conditions based upon its stage, our curve represents the actual data taken by the geology department.
- Continue creating interpolation curves of river stage vs. flow rate for historical reference.

Acknowledgements

 Elizabeth George, Wittenberg Department of Physics

• HEC-RAS 4.1 Reference Manual

 Fundamentals of Fluid Mechanics by Munson and Young

Questions?