Trapping Variation in Frogs in Ohio Fens

Greyden Yoder

Wittenberg University, Department of Environmental Science, Box 720, Springfield, OH 45501

- These three frog species above are found throughout Ohio near areas with permanent or semi-permanent water sources ${ }^{1}$.
- Early life stage diets vary only slightly and include algae, zooplankton, and other small diatoms.
- Their adult diets consist mainly of insects, insect larvae, and small invertebrates, however some have been observed eating snakes and even other frogs ${ }^{10}$.
- Data for this study was collected from a spotted turtle mark-recapture study. This study contained 4353 total trap nights, with 302 total frog captures.

Hypothesis

We hypothesized that capture rates would increase for green frogs, leopard frogs, and bull frogs during their peak periods of breeding, May - June ${ }^{11}$, March - June ${ }^{8}$, and March - July ${ }^{7}$, respectively. We believe this would occur due to the increased movement by females, as well as satellite males unable to win proper territory ${ }^{2}$. To understand the variation in capture rate between trap sessions, we will compare the total captures over the 15 trap sessions standardized to 30 traps each. Additionally, a comparison of percent capture rate per trap per trap session, and a Shannon-Weiner index of diversity.

Methods

This study was conducted in a fen surrounded by agricultural land in Clark County, Ohio.

- Decoys were placed in ProMar Minnow traps (TR-502 36" or TR-503 24") and traps were checked at 24 hours intervals ${ }^{5}$.
- Decoys consisted of Safari Limited redeared sliders (269529, 5.3"L x 3.6"W x $1.5^{\prime \prime} \mathrm{H}$) spray-painted with Krylon Fusion Flat Black (K02519000), as well as Sargent Art Acrylic yellow (22-2302) and orange (22-2314) colors (G. Lipps, pers.com).

Figure 3: A comparison of total frog captures per trap session. See table 1.

Capture Rate per Trap per Trap Night

Trap Session
Figure 4: A comparison of the capture rate of each trap per trap session Species Diversity per Trap Session

Results

Figure 8: A box-and-whisker plot displaying the number of frogs expected per trap night, when standardized at 30 traps in each session. For 75% of trap sessions, total expected capture is between 1.2 and 2.7 total frogs. There is only one significant outlier, of 8.76 total frog captures per night.

Table 2: Summary Statistics for figure 7. Table 2 and Figure 7 from Lock5Stat.com

Conclusions

- A chi-squared p-value of 0.0397 was calculated, stating that there was significant difference between total number of frog captures per night. This significant difference was due to the outlier of 8.76 captures per night in the Mar-17 trap session. Without this outlier, the data would not be significant.
- Due to the nature of fens being fed by ground and surface water year round, the presence of frogs in these areas may not vary greatly, causing the data to not be representative of other frog habitats such as lakes, ponds, etc.
- Variations in air and water temperature may also play a role in the variation of capture rates, and these values may have greater variation in areas other than fens.
- The data used for this comparative study originated from a turtle capture project. A markrecapture study using frog capture techniques instead of turtle trapping techniques may produce different data that could better illustrate the variation in capture based on breeding periods.

References

[^0]
[^0]:

 Howell, H. J., D. T. M.CKnight, and R. A. Seigel. 2016. A novel method of collecting spoted turtles (Clemmys guttata). Herp. Rev. 47(2): 202-2055
 Martof B. 1956. Growth and Development of the Green Frog, Rana clamitans, Under Natural Conditions. The American Midland Naturalist. Vol. 55 (1): $101-117.6$

 Resources Division, Information and Technology Report USGS/BRD/TR-2002-0004, Washington, D.C. iv +38 p. 9 . 9
 Porej D., Hetherington T. 2005 . Designing Wetlands for Amphibians: The Importance of Predatory Fish and Shallow Littoral Zones in Structuring of A

