
The Pancake Problem:
Prefix Reversals of Certain Permutations

Alyssa Armstrong

May 8, 2009

Contents

1 Abstract 2

2 The Problem 2

3 Initial Algorithm 4

4 Gates’ Algorithm 5

5 My Algorithm 8

6 Statistics 16

7 Conclusion 18

8 References 18

A Statistical Analysis 19

1

1 Abstract

The Pancake Problem concerns the minimum number of moves needed to
order a random stack of differently-sized pancakes. Mathematically, this
problem translates to flipping prefixes of permutations until the identity per-
mutation is achieved. Bill Gates and Christos Papadimitriou created an
algorithm in 1979 that improved the lower bound of the Pancake Problem.
While Gates and Papadimitriou characterized a permutation based on blocks,
I consider transposition decomposition and define a set of algorithms that
require fewer reversals than Gates’ algorithm in certain cases.

2 The Problem

In 1975, Jacob Goodman, under the name Harry Dweighter, proposed the
Pancake Problem, which details a chef making pancakes in a busy diner. He
makes a number of differently-sized pancakes and stacks them randomly on
a plate. In order to arrange the pancakes in an aesthetically-pleasing man-
ner, he flips portions of the stack so that the pancakes are ordered from the
largest pancake on the bottom of the plate, the next largest on top of that,
and so on, until the smallest pancake is on the top of the stack. The chef
only has a spatula, so he can only place his spatula somewhere in the stack,
lifting the portion above the spatula, flipping it, and then placing it back
onto the stack. Goodman proposed this scenario wondering what the mini-
mum number of flips the chef would need to perform in order to rearrange
the stack of pancakes.

For example, consider the stack of pancakes below (Figure 1a). The chef
can place the spatula below the third pancake (Figure 1b), flip it, and place
it back on the stack to obtain a newly-arranged stack of pancakes (Figure
1c). He can then place the spatula below the fourth pancake (Figure 1d), flip
it, and place it back on the stack to obtain another rearranged stack (Figure
1e). At this point, the stack is correctly rearranged.

2

Figure 1: Flipping a Stack of Pancakes

We can translate this problem into the language of mathematics by rewrit-
ing a randomly arranged stack of n differently-sized pancakes as a permuta-
tion of n objects:

Definition 2.1. A permutation σ ∈ Sn is an ordering of n distinct objects.
Sn is the group of all permutations of n objects.

Example 2.2. Consider σ ∈ S5. We can denote σ in three ways:

• Two line notation:

(
1 2 3 4 5

1 5 4 3 2

)
• One line notation: (1 5 4 3 2) This is just the second line in the two

line notation.

• Cyclic notation: (2 5)(3 4) This means 1 maps to 1, 2 maps to 5, 5
maps to 2, 3 maps to 4, and 4 maps to 3.

3

We will use the one line notation.

Definition 2.3. The identity permutation ι ∈ Sn maps each element of
the set {1, 2, . . . , n} to itself. Thus, in our one line notation, for ι ∈ Sn, ι =
(1 2 3 . . . n).

Also, each time the chef flips a stack of pancakes, a portion of the per-
mutation is reversed. We can define this flip as a prefix reversal:

Definition 2.4. Given σ ∈ Sn, a prefix reversal at σi of σ = (σ1 σ2 . . . σi . . . σn)
is σ′ ∈ Sn such that σ′ = (σi . . . σ2 σ1 σi+1 . . . σn).

Example 2.5. Let σ ∈ Sn, such that σ = (4 7 2 1 5 3 6). The prefix reversal
of σ at 5 is σ′ = (5 1 2 7 4 3 6).

Thus, the Pancake Problem translates to conducting prefix reversals on
a permutation until the identity permutation is achieved.

3 Initial Algorithm

After experimenting with a few small permutations, one can create a trivial
algorithm to find the minimum number of reversals needed to obtain the
identity permutation.

Lemma 3.1. The lower bound for the number of reversals needed to trans-
form a permutation, σ ∈ Sn, to the identity is at most 2n reversals.

Proof. We show this using the following algorithm:

1. Given σ ∈ Sn, reverse at the largest number that is not in its sorted
position. (Note: a number is in its sorted position when σi = i.)

2. Reverse so that number is in its sorted position.

3. Repeat steps 1 and 2 until the identity permutation is achieved.

Since it takes at most two reversals to sort each element of σ to its sorted
position, it will take at most 2n reversals to transform σ to ι. ut

Example 3.2. Given the permutation, σ = (3 1 5 4 2). Following the trivial
algorithm,

4

1. Doing step 1 of the algorithm, we reverse the permutation at 5 to obtain
(5 1 3 4 2).

2. Doing step 2 of the algorithm, we reverse the permutation at 2 to obtain
(2 4 3 1 5).

3. Doing step 1 of the algorithm, we reverse the permutation at 4 to obtain
(4 2 3 1 5).

4. Doing step 2 of the algorithm, we reverse the permutation at 1 to obtain
(1 3 2 4 5).

5. Doing step 1 of the algorithm, we reverse the permutation at 3 to obtain
(3 1 2 4 5).

6. We do not need to do step 1 of the algorithm, so we reverse the per-
mutation at 2 to obtain (2 1 3 4 5).

7. We do not need to do step 1 of the algorithm, so we reverse the per-
mutation at 1 to obtain (1 2 3 4 5).

Therefore, it takes 7 reversals to transform σ to ι. This is less than the
maximum of 10 because we did not need to reverse two times when sorting
1 and 2. It is common for this algorithm to result in fewer than 2n reversals
in practice.

4 Gates’ Algorithm

As an undergraduate at Harvard University in 1979, Bill Gates was presented
the Pancake Problem in his Combinatorial Mathematics class as an example
of a problem that was simple to propose, but difficult to solve. In just a few
days, Gates returned to his professor, claiming that he had created a general
algorithm in order to rearrange a permutation σ ∈ Sn. Gates and his advisor,
Christos Papadimitriou, decreased the lower bound of reversals from 2n to
5n+5

3
≈ 1.667n, by classifying a permutation based on its block structure and

creating an algorithm that will transform any σ ∈ Sn to ι. What follows are
a few definitions about his block structure.

Definition 4.1. Given the permutation, σ ∈ Sn.

5

• If |σi − σj| ≡ 1 (mod n), then i is consecutive to j.

• If |σi − σi+1| = 1, then the pair (i, i+ 1) is an adjacency in σ.

• A block is a maximal length sublist, x = σi σi+1 . . . σj−1 σj = y, such
that there is an adjacency between σa and σa+1 for all i ≤ a ≤ j. We
denote this block as x ∼ y.

• The initial and final elements of a block are called the endpoints of
the block.

• An element that does not occur in a block is called a singleton.

Example 4.2. Given σ ∈ S7 such that σ = (2 3 4 7 6 1 5),

• 1 is consecutive to 2, 2 is consecutive to 3, . . . , 7 is consecutive to 8,
and 8 is consecutive to 1.

• the pair (7, 6) is an adjacency (and a block, since all adjacencies are
blocks of size 2), and

• (2 3 4) is a block in σ. The endpoints are 2 and 4.

• The elements 1 and 5 are singletons.

We can decompose a permutation based on the block structure of the
permutation. For example, we will classify the permutation σ ∈ S7 where
σ = (2 3 4 7 6 1 5). We analyze σ from the front of the permutation, looking
for the elements consecutive to the first element of σ. We will always denote
the first element of the permutation, B. In this case, B = 2, and σ begins
with the block (2 3 4), which we denote B ∼ C. We then look for the element
consecutive to the left endpoint of this block, which is 1. The element 1 is
a singleton in σ since it is not part of any other block. We denote A = 1
in our classification, so that A is consecutive to B = 2. We do the same
analysis for consecutive elements of the right endpoint of our initial block,
which is 4. The only element consecutive to 4 is 5, since 3 is part of the
block already. Since 5 is not part of any other block, it is a singleton, and
we denote D = 5 in our classification, so that C = 4 is consecutive to D = 5.
We denote any other elements between blocks and singletons by the symbol
. We also separate the blocks and singletons marked by the symbol . Thus,

6

our classification of σ is B ∼ C A D.

Gates and Papadimitriou thus define an algorithm which classifies a per-
mutation into one of nine cases based on the structure of the initial element
and its consecutive elements (shown below). Once the case is identified for
a permutation, the detailed reversals are performed creating a newly ar-
ranged permutation. This process is repeated until the identity permutation
is achieved.

Example 4.3. Suppose we are given σ ∈ S7 where σ = (2 3 4 7 6 1 5).

By Gate’s Algorithm,

1. The permutation begins with the block (2, 3, 4) and 2 is consecutive to
1 which is a singleton. Thus, by case 4, we reverse at 6: (6 7 4 3 2 1 5).

2. The permutation begins with the block (6, 7) and 6 is consecutive to 5
which is a singleton. Thus, by case 4, we reverse at 1: (1 2 3 4 7 6 5).

3. The permutation begins with the block (1, 2, 3, 4) and 1 is consecutive
to 7, which is the left endpoint of the block (7, 6, 5). Thus, by case 5,
we reverse at 4: (4 3 2 1 7 6 5).

4. The permutation is now a single block. At this point, the trivial algo-
rithm is used to finish transforming the permutation. Thus, we reverse
at 7: (7 1 2 3 4 6 5).

5. Continuing with the trivial algorithm, we reverse at 5: (5 6 4 3 2 1 7).

6. Continuing with the trivial algorithm, we reverse at 6: (6 5 4 3 2 1 7).

7. Continuing with the trivial algorithm, we reverse at 1: (1 2 3 4 5 6 7).

Thus, Gates’ algorithm requires 7 reversals to transform σ to ι.

Using this algorithm, Gates and Papadimitriou showed that the lower
bound for the minimum number of reversals needed to transform a permu-
tation to the identity permutation is 5n+5

3
≈ 1.667n. This bound remained

7

Gates’ Algorithm - Reversal Sequences
Case Reversal Sequence Description

1
B A Singleton B at the beginning of the permutation is
→ BA consecutive with a singleton A.

2
B A ∼ Singleton B at the beginning of the permutation is
→ BA ∼ consecutive with the left endpoint A of a block A ∼.

3

B ∼ A ∼ C Singleton B at the beginning of the permutation is
→ A ∼ B ∼ C consecutive with the last elements (A and C) of 2
→ ∼ AB ∼ C separate blocks ∼ A and ∼ C.
→ C ∼ BA ∼
→ ∼ CBA ∼

4
B ∼ A Left endpoint of block B ∼ at the beginning of the
→ ∼ BA permutation is consecutive with a singleton A.

5
B ∼ A ∼ Left endpoint of block B ∼ at the beginning of the
→ ∼ BA ∼ permutation is consecutive with A in block A ∼.

6

B ∼ C D ∼ Right endpoint C in block B ∼ C at the beginning is
→ C ∼ B D ∼ consecutive with left endpoint D in block D ∼.
→ B ∼ CD ∼

7

B ∼ C ∼ D Right endpoint C in block B ∼ C at the beginning is
→ C ∼ B D ∼ consecutive with right endpoint D in block ∼ D.
→ ∼ DC ∼ B

8

B ∼ C ∼ A D The block B ∼ C is at the beginning, left endpoint B is
→ D A ∼ C ∼ B consecutive with right endpoint A in block ∼ A. The
→ ∼ A D ∼ B endpoint C of B ∼ C is consecutive with a singleton D
→ B ∼ D A ∼ occurring to the right of ∼ A.
→ D ∼ A ∼

9

B ∼ C D ∼ A The block B ∼ C is at the beginning, left endpoint B is
→ D C ∼ B ∼ A consecutive with right endpoint A in block ∼ A. The
→ D ∼ B ∼ A endpoint C of B ∼ C is consecutive with a singleton D
→ A ∼ B ∼ D occurring between the block B ∼ C and the block ∼ A.
→ ∼ A ∼ D

8

intact until 2008, when a group of researchers at the University of Texas
at Dallas lowered the bound to 18

11
n ≈ 1.636n with the use of high-powered

computers. This result would not have been achieved without Gates’ large
influence in the computing world, continuing his legacy in this problem.

5 My Algorithm

Instead of considering all permutations, I narrowed my research to include
permutations that can be decomposed into only one or two disjoint transpo-
sitions.

Definition 5.1. Given σ ∈ Sn, a transposition is a mapping such that for
i, j ∈ {1, 2, . . . , n}, σi = j, σj = i and σk = k for all k 6= i, j.

Definition 5.2. A permutation σ ∈ Sn is disjoint and non-overlapping
if it is of the form, σ = (σ1 σ2 . . . σk−1 σk+i σk+1 . . . σk+i−1 σk

σk+i+1 . . . σk+j−1 σk+l σk+j+1 . . . σk+l−1 σk+j σk+l+1 . . . σn).

Example 5.3. The transpositions, (1 2 5 4 3) and (1 4 3 2 5), are disjoint.
However, the transpositions, (1 2 5 4 3) and (1 2 4 3 5), are not disjoint since
3 is mapped to both 5 and 4.

Definition 5.4. The distance of a transposition (σ1 . . . σi−1 σj σi+1 . . . σj−1

σi σj+1 . . . σn) is |i− j|.
Example 5.5. The permutation, σ ∈ S6 where σ = (1 2 6 4 5 3) is a
transposition, since the 3 and 6 have been swapped. The distance of σ is
6− 3 = 3.

While Gates and Papadimitriou’s algorithm is useful for all permutations,
the algorithm is based on the structure of the permutation after every prefix
reversal. When only considering permutations made up of one transposition,
this algorithm can be simplified and we only need to consider three param-
eters: the distance |σi − σj| of the transposition (1 . . . j . . . i . . . n), the
number of elements before the transposition, and the number of elements
after the transposition. By classifying permutations based on these three
parameters, we can use three algorithms to transform a transposition to the
identity using prefix reversals. These three algorithms are:

Algorithm 1. Suppose that σa = (σ1 σ2 . . . σk σk+2 σk+1 σk+3 . . . σn).
The distance of the transposition, (σk+1 σk+2) is 1.

9

1. Reverse at σk+1.
This results in the permutation: σk+1 σk+2 σk . . . σ2 σ1 σk+3 . . . σn.

2. Reverse at σk+2.
This results in the permutation: σk+2 σk+1 σk . . . σ2 σ1 σk+3 . . . σn.

3. Reverse at σ1.
This results in the permutation: σ1 σ2 . . . σk σk+1 σk+2 σk+3 . . . σn.
This is the identity.

The general case of Algorithm 1 results in three prefix reversals. However, if
the transposition is located at the beginning of the permutation, ie. k = 0,
then step 1 and step 2 are not necessary. Thus, there is only one prefix
reversal needed. Thus,

Lemma 5.6. For σa described above, the maximum number of reversals re-
quired to transform σa to ι is 3.

Algorithm 2. Suppose that σb = (σ1 σ2 . . . σk σk+3 σk+2 σk+1 σk+4 . . . σn).
The distance of the transposition, (σk+1 σk+3) is 2.

1. Reverse at σk+1.
This results in the permutation: σk+1 σk+2 σk+3 σk . . . σ2 σ1 σk+4 . . . σn.

2. Reverse at σk+3.
This results in the permutation: σk+3 σk+2 σk+1 σk . . . σ2 σ1 σk+4 . . . σn.

3. Reverse at σ1.
This results in the permutation: σ1 σ2 . . . σk σk+1 σk+2 σk+3 σk+4 . . . σn.
This is the identity.

Similar to the first algorithm,the general case of Algorithm 2 results in three
prefix reversals. However, if the transposition is located at the beginning of
the permutation, ie. k = 0, then step 1 and step 2 are not necessary, and
there is only one prefix reversal needed. Thus,

Lemma 5.7. For σb described above, the maximum number of reversals re-
quired to transform σb to ι is 3.

10

Algorithm 3. Suppose that σc = (σ1 σ2 . . . σk σk+i σk+2 . . . σk+i−1 σk+1 σk+i+1 . . . σn).
The distance of the transposition, (σk+1 σk+i) is greater than 2.

1. Reverse at σk.
This results in the permutation: σk . . . σ2 σ1 σk+i σk+2 . . . σk+i−1 σk+1 σk+i+1 . . . σn.

2. Reverse at σk+i.
This results in the permutation: σk+i σ1 . . . σk σk+2 . . . σk+i−1 σk+1 σk+i+1 . . . σn.

3. Reverse at σk+1.
This results in the permutation: σk+1 σk+i−1 . . . σk+2 σk . . . σ1 σk+i σk+i+1 . . . σn.

4. Reverse at σk+2.
This results in the permutation: σk+2 . . . σk+i−1 σk+1 σk . . . σ1 σk+i σk+i+1 . . . σn.

5. Reverse at σk+i−1.
This results in the permutation: σk+i−1 . . . σk+2 σk+1 σk . . . σ1 σk+i σk+i+1 . . . σn.

6. Reverse at σ1.
This results in the permutation: σ1 σ2 . . . σk σk+1 σk+2 . . . σk+i−1 σk+i σk+i+1 . . . σn.
This is the identity.

The general case of Algorithm 3 results in six prefix reversals. However, if
the transposition is located at the beginning of the permutation, ie. k = 0,
then steps 1 and step 2 are not necessary, and there are only four prefix
reversals needed. Also, if the transposition is located at the second element
of the permutation, ie. k = 1, then step 1 is not necessary, and there are
only five prefix reversals needed.

Lemma 5.8. For σc described above, the maximum number of reversals re-
quired to transform σc to ι is 6.

We combine the preceding three lemmas in the following theorem.

Theorem 5.9. For σ ∈ Sn, such that σ can be decomposed into only one
transposition, the maximum number of reversals required to transform σ to ι
is 6.

Example 5.10. Suppose we are given σ ∈ S8 where σ = (1 2 6 4 5 3 7 8).
We see that the distance of the transposition, (3, 6) is 6− 3 = 3.
Thus by Algorithm 3,

11

1. Reverse at 2: (2 1 6 4 5 3 7 8)

2. Reverse at 6: (6 1 2 4 5 3 7 8)

3. Reverse at 3: (3 5 4 2 1 6 7 8)

4. Reverse at 4: (4 5 3 2 1 6 7 8)

5. Reverse at 5: (5 4 3 2 1 6 7 8)

6. Reverse at 1: (1 2 3 4 5 6 7 8)

Thus, my algorithm only requires 6 reversals compared to Gates’ algorithm,
which requires 10 reversals.

As seen from the example above, my algorithm requires less reversals
than Gates’ algorithm. Gates’ algorithm seems to require a maximum of
10 reversals as seen from the permutation below. We show the reversals
for this particular permutation since the transposition has a large distance
and is not located at the very beginning or end. We consider which types
of permutations result in my algorithm requiring less reversals than Gates’
algorithm in Section 6.

Lemma 5.11. Given σ ∈ Sn such that
σ = (σ1 σ2 . . . σk σk+i σk+2 . . . σk+i−1 σk+1 σk+i+1 . . . σn). By Gates’ algo-
rithm, σ falls into the case, B ∼ C D ∼ A , and thus requires 10
reversals to obtain the identity permutation.

Proof. Given σ = (σ1 σ2 . . . σk σk+i σk+2 . . . σk+i−1 σk+1 σk+i+1 . . . σn).

1. Reverse at σk+1: (σk+1 σk+i−1 . . . σk+2 σk+i σk . . . σ1 σk+i+1 . . . σn)
(Case 9)

2. Reverse at σk+i: (σk+i σk+2 . . . σk+i−1 σk+1 σk . . . σ1 σk+i+1 . . . σn)
(Case 9 cont.)

3. Reverse at σn: (σn . . . σk+i+1 σ1 . . . σk σk+1 σk+i−1 . . . σk+2 σk+i)
(Case 9 cont.)

4. Reverse at σk+i+1: (σk+i+1 . . . σn σ1 . . . σk σk+1 σk+i−1 . . . σk+2 σk+i)
(Case 9 cont.)

12

5. Reverse at σk+2: (σk+2 . . . σk+i−1 σk+1 σk . . . σ1 σn . . . σk+i+1 σk+i)
(Case 4)

6. Reverse at σk+i−1: (σk+i−1 . . . σk+2 σk+1 σk . . . σ1 σn . . . σk+i+1 σk+i)
(Case 5)

7. Reverse at σn: (σn σ1 . . . σk σk+1 σk+2 . . . σk+i−1 σn−1 . . . σk+i+1 σk+i)
(Trivial algorithm)

8. Reverse at σk+i: (σk+i σk+i+1 . . . σn−1 σk+i−1 . . . σk+2 σk+1 σk . . . σ1 σn)
(Trivial algorithm cont.)

9. Reverse at σn−1: (σn−1 . . . σk+i+1 σk+i σk+i−1 . . . σk+2 σk+1 σk . . . σ1 σn)
(Trivial algorithm cont.)

10. Reverse at σ1: (σ1 . . . σk σk+1 σk+2 . . . σk+i−1 σk+i σK+i+1 . . . σn−1 σn)
(Trivial algorithm cont.)

This is the identity permutation. ut

We can also use these three algorithms when a permutation decomposes
into two (or more) disjoint, non-overlapping transpositions.

Theorem 5.12. For σ ∈ Sn where σ = (σ1 . . . σk σk+i . . . σk+1 σk+i+1 . . . σk+j−1

σk+l . . . σk+j σk+l+1 . . . σn) (ie. where σ can be decomposed into two disjoint,
non-overlapping transpositions), the maximum number of reversals required
to transform σ to ι is 12 when using my algorithms stated above.

We see this with the following example:

Example 5.13. Suppose we are given σ ∈ S8 where σ = (1 5 3 4 2 8 7 6).
This can be decomposed into two transpositions: (5, 2) (distance 3) and (8, 6)
(distance 2).
First, by Algorithm 3,

1. Reverse at 5: (5 1 3 4 2 8 7 6)

2. Reverse at 2: (2 4 3 1 5 8 7 6)

3. Reverse at 3: (3 4 2 1 5 8 7 6)

4. Reverse at 4: (4 3 2 1 5 8 7 6)

13

5. Reverse at 1: (1 2 3 4 5 8 7 6)

Then, by Algorithm 2,

6. Reverse at 6: (6 7 8 5 4 3 2 1)

7. Reverse at 8: (8 7 6 5 4 3 2 1)

8. Reverse at 1: (1 2 3 4 5 6 7 8)

Thus, my algorithm only requires 8 reversals compared to Gates’ Algorithm,
which requires 9 reversals.

As before, we can see from the three algorithms that the maximum
number of reversals required to transform a permutation two disjoint, non-
overlapping transpositions to the identity permutation is 12 reversals. We
show that the number of reversals required for this type of permutation,
where both transpositions have large distances and neither are located at
the beginning, end or right next to each other, for Gates’ algorithm is 15
reversals:

Lemma 5.14. Given σ ∈ Sn such that σ = (σ1 σ2 . . . σk−1 σk+i σk+1 . . . σk+i−1 σk

σk+i+1 . . . σk+j−1 σk+l σk+j+1 . . . σk+l−1 σk+j σk+l+1 . . . σn). By Gates’ algo-
rithm, σ falls into the case, B ∼ C D ∼ A , and thus requires 15
reversals to obtain the identity permutation.

Proof. Given σ = (σ1 σ2 . . . σk−1 σk+i σk+1 . . . σk+i−1 σk

σk+i+1 . . . σk+j−1 σk+l σk+j+1 . . . σk+l−1 σk+j σk+l+1 . . . σn).

1. Reverse at σk: (σk σk+i−1 . . . σk+1 σk+i σk−1 . . . σ1

σk+i+1 . . . σk+j−1 σk+l σk+j+1 . . . σk+l−1 σk+j σk+l+1 . . . σn)
(Case 9)

2. Reverse at σk+i: (σk+i σk+1 . . . σk+i−1 σk σk−1 . . . σ1

σk+i+1 . . . σk+j−1 σk+l σk+j+1 . . . σk+l−1 σk+j σk+l+1 . . . σn)
(Case 9 cont.)

3. Reverse at σn: (σn . . . σk+l+1 σk+j σk+l−1 . . . σk+j+1

σk+l σk+j−1 . . . σk+i+1 σ1 . . . σk−1 σk σk+i−1 . . . σk+1 σk+i)
(Case 9 cont.)

14

4. Reverse at σk+i+1: (σk+i+1 . . . σk+j−1 σk+l σk+j+1 . . . σk+l−1

σk+j σk+l+1 . . . σn σ1 . . . σk−1 σk σk+i−1 . . . σk+1 σk+i)
(Case 9 cont.)

5. Reverse at σk+1: (σk+1 . . . σk+i−1 σk σk−1 . . . σ1 σn . . . σk+l+1

σk+j σk+l−1 . . . σk+j+1 σk+l σk+j−1 . . . σk+i+1 σk+i)
(Case 4)

6. Reverse at σk+i−1: (σk+i−1 . . . σk+1 σk σk−1 . . . σ1 σn . . . σk+l+1

σk+j σk+l−1 . . . σk+j+1 σk+l σk+j−1 . . . σk+i+1 σk+i)
(Case 5)

7. Reverse at σk+l: (σk+l σk+j+1 . . . σk+l−1 σk+j σk+l+1 . . . σn

σ1 . . . σk−1 σk σk+1 . . . σk+i−l σk+j−1 . . . σk+i+1 σk+i)
(Case 9)

8. Reverse at σk+j: (σk+j σk+l−1 . . . σk+j+1 σk+l σk+l+1 . . . σn σ1 . . . σk−1

σk σk+1 . . . σk+i−l σk+j−1 . . . σk+i+1 σk+i)
(Case 9 cont.)

9. Reverse at σk+i: (σk+i σk+i+1 . . . σk+j−1 σk+i−1 . . . σk+1 σk σk−1 . . . σ1

σn . . . σk+l+1 σk+l σk+j+1 . . . σk+l−1 σk+j)
(Case 9 cont.)

10. Reverse at σk+j−1: (σk+j−1 . . . σk+i+1 σk+i σk+i−1 . . . σk+1 σk σk−1 . . . σ1

σn . . . σk+l+1 σk+l σk+j+1 . . . σk+l−1 σk+j)
(Case 9 cont.)

11. Reverse at σk+l−1: (σk+l−1 . . . σk+j+1 σk+l σk+l+1 . . . σn σ1 . . . σk−1

σk σk+1 . . . σk+i−1 σk+i σk+i+1 . . . σk+j−1 σk+j)
(Case 4)

12. Reverse at σk+j+1: (σk+j+1 . . . σk+l−1 σk+l σk+l+1 . . . σn σ1 . . . σk−1

σk σk+1 . . . σk+i−1 σk+i σk+i+1 . . . σk+j−1 σk+j)
(Case 5)

13. Reverse at σn: (σn . . . σk+l+1 σk+l σk+l−1 . . . σk+j+1 σ1 . . . σk−1 σk

σk+1 . . . σk+i−1 σk+i σk+i+1 . . . σk+j−1 σk+j)
(Trivial Algorithm)

15

14. Reverse at σk+j: (σk+j σk+j−1 . . . σk+i+1 σk+i σk+i−1 . . . σk+1 σk

σk−1 . . . σ1 σk+j+1 . . . σk+l−1 σk+l σk+l+1 . . . σn)
(Trivial Algorithm cont.)

15. Reverse at σ1: (σ1 . . . σk−1 σk σk+1 . . . σk+i−1 σk+i σk+i+1 . . . σk+j−1

σk+j σk+j+1 . . . σk+l−1 σk+l σk+l+1 . . . σn)
(Trivial Algorithm cont.)

This is the identity permutation. ut

It seems plausible that for single and disjoint double transpositions, my
algorithm will require fewer reversals than Gates’ algorithm since the maxi-
mum number of reversals needed for my algorithm is 12, while the maximum
number of reversals needed for Gates’ algorithm is 15.

However, for some permutations which can be decomposed into two dis-
joint, non-overlapping transpositions, Gates’ algorithm does require fewer
reversals than my algorithm. We see this in the following example,

Example 5.15. Suppose we are given σ ∈ S7 where σ = (1 2 3 5 4 7 6).
This can be decomposed into two transpositions: (4, 5) (distance 1) and (6, 7)
(distance 1). We will transform σ to ι using my algorithm.
First, by Algorithm 1,

1. Reverse at 4: (4 5 3 2 1 7 6)

2. Reverse at 5: (5 4 3 2 1 7 6)

3. Reverse at 1: (1 2 3 4 5 7 6)

Then, by Algorithm 1,

4. Reverse at 6: (6 7 5 4 3 2 1)

5. Reverse at 7: (7 6 5 4 3 2 1)

6. Reverse at 1: (1 2 3 4 5 6 7)

Thus, my algorithm requires 6 reversals compared to Gates’ Algorithm,
which only requires 5 reversals.

16

6 Statistics

After creating the three algorithms for single and disjoint, non-overlapping
double transpositions, we now investigate what causes the most significant
difference between the number of reversals required for Gates’ algorithm and
the number of reversals required for my algorithm.

For a single transposition, we can define variables a, b, x ∈ Z that char-
acterizes the location and distance of the transposition:

Given σ ∈ Sn,

σ = (σ1 σ2 . . . σk︸ ︷︷ ︸
a

σk+i σk+2 . . . σk+i−1 σk+1︸ ︷︷ ︸
x

σk+i+1 . . . σn︸ ︷︷ ︸
b

).

When defining my algorithms, we saw that the distance of the transposi-
tion, x, can either be 1, 2, or ≥ 3. Also, we saw that a and b can either be 0,
1, or ≥ 2. Thus, there are three possible values for x, three possible values
for a, and three possible values for b, resulting in 33 = 27 possible cases for
a single transposition.

Theorem 6.1. My algorithm requires fewer reversals than Gates’ algorithm
for 12 cases, and the same number of reversals for 15 cases.

Therefore, my algorithm shows 100 percent improvement for the single
transposition case. We define improvement as requiring either the same num-
ber or fewer reversals than Gates’ algorithm. (See the Appendix for the table
of cases and their respective differences in the number of reversals.)

In an attempt to predict the difference in the number of reversals required
by Gates’ algorithm and the number of reversals required by my algorithm (a
positive difference means that my algorithm is more efficient), I used Minitab
to compute a regression model:

Difference = −0.833 + 0.556x+ 0.611a+ 1.11b

Although none of the coefficients of the variables are very large – making
the model statistically insignificant – all the coefficients are greater than
0. This means that the difference will tend to be positive and, thus, my
algorithm shows improvement compared to Gates’ algorithm.

17

We complete a similar analysis for the double, disjoint, non-overlapping
transpositions. Let x, y, a, b, c ∈ Z such that, given σ ∈ Sn,

(σ1 . . . σk︸ ︷︷ ︸
a

σk+i . . . σk+1︸ ︷︷ ︸
x

σk+i+1 . . . σk+j−1︸ ︷︷ ︸
b

σk+l . . . σk+j︸ ︷︷ ︸
y

σk+l+1 . . . σn︸ ︷︷ ︸
c

).

Once again, x and y can either be 1, 2, or ≥ 3, and a, b, and c can either
be 0, 1, ≥ 2. I only considered cases where x = y, so there are 34 = 81 cases
for a double transposition. For each case, I found the difference between the
number of reversals for Gates’ algorithm and the number of reversals for my
algorithm (see the Appendix).

Theorem 6.2. My algorithm requires fewer reversals than Gates’ algorithm
for 43 cases, it requires the same number of reversals for 30 cases, and re-
quires more reversals for 8 cases.

Thus, my algorithm shows a 90.12 percent improvement compared to
Gates’ algorithm.

Predicting the difference using a regression model, we see that

Difference = 0.407− 0.167a+ 0.148x+ 0.148b+ 0.611c

Like in the single transposition case, we find that the model is not sta-
tistically significant, since the coefficients are less than 1. However, we see
that the coefficient for a is negative, which leads us to hypothesize that the
location of the first transposition could affect the difference.

7 Conclusion

For the single transposition and double, disjoint, non-overlapping transposi-
tions, we see that my algorithm requires less reversals than Gates’ algorithm
for most permutations. I hope to continue to analyze the type of permuta-
tion and its effects on the difference between the number of reversals without
proceeding case-by-case. I also would like to extend my analysis to other
types of double transpositions, including

• disjoint transpositions such that one transposition is nested within the
other: ie. σ = (7 4 3 2 5 6 1).

18

• disjoint transpositions such that two transpositions are overlapping: ie.
σ = (6 2 9 4 5 1 7 8 3).

• non-disjoint transpositions, or a 3-cycle: ie. σ = (1 4 3 7 5 6 2).

8 References

[1] B. Chitturi, et al., An (18/11)n upper bound for sorting by prefix reversals,
Theoretical Computer Science (2008), doi: 10.1016/j.tcs.2008.04.045.
[2] Gates W.H.; Papadimitriou, C.H. Bounds for sorting by prefix reversal.
Discrete Math. 27 (1979), 47-57.

19

A Statistical Analysis

Single Transposition Cases

x a b Alyssa Gates Difference
1 0 0 1 1 0
1 0 1 1 1 0
1 0 2+ 1 1 0
1 1 0 3 3 0
1 1 1 3 3 0
1 1 2+ 3 7 4
1 2+ 0 3 4 1
1 2+ 1 3 3 0
1 2+ 2+ 3 7 4
2 0 0 1 1 0
2 0 1 1 1 0
2 0 2+ 1 1 0
2 1 0 3 4 1
2 1 1 3 3 0
2 1 2+ 3 7 4
2 2+ 0 3 5 2
2 2+ 1 3 3 0
2 2+ 2+ 3 7 4

3+ 0 0 4 4 0
3+ 0 1 4 8 4
3+ 0 2+ 4 8 4
3+ 1 0 5 5 0
3+ 1 1 5 8 3
3+ 1 2+ 5 5 0
3+ 2+ 0 6 6 0
3+ 2+ 1 6 10 4
3+ 2+ 2+ 6 10 4

20

Double Disjoint Transposition Cases

x y a b c Alyssa Gates Difference
1 1 0 0 0 4 3 -1
1 1 0 0 1 4 6 2
1 1 0 1 0 4 5 1
1 1 0 1 1 4 4 0
1 1 1 0 0 6 5 -1
1 1 1 1 0 6 9 3
1 1 1 0 1 6 8 2
1 1 1 1 1 6 10 4
1 1 0 0 2+ 4 6 2
1 1 0 2+ 0 4 5 1
1 1 0 2+ 2+ 4 4 0
1 1 2+ 0 0 6 5 -1
1 1 2+ 2+ 0 6 7 1
1 1 2+ 0 2+ 6 8 2
1 1 2+ 2+ 2+ 6 6 0
1 1 0 1 2+ 4 4 0
1 1 0 2+ 1 4 4 0
1 1 1 2+ 0 6 7 1
1 1 2+ 1 0 6 7 1
1 1 1 0 2+ 6 11 5
1 1 2+ 0 1 6 8 2
1 1 1 1 2+ 6 10 4
1 1 1 2+ 2+ 6 6 0
1 1 1 2+ 1 6 6 0
1 1 2+ 1 1 6 6 0
1 1 2+ 2+ 1 6 6 0
1 1 2+ 1 2+ 6 6 0

21

Double Disjoint Transposition Cases (cont.)

x y a b c Alyssa Gates Difference
2 2 0 0 0 4 4 0
2 2 0 0 1 4 6 2
2 2 0 1 0 4 6 2
2 2 0 1 1 4 4 0
2 2 1 0 0 6 6 0
2 2 1 1 0 6 9 3
2 2 1 0 1 6 8 2
2 2 1 1 1 6 13 7
2 2 0 0 2+ 4 6 2
2 2 0 2+ 0 4 6 2
2 2 0 2+ 2+ 4 4 0
2 2 2+ 0 0 6 6 0
2 2 2+ 2+ 0 6 8 2
2 2 2+ 0 2+ 6 8 2
2 2 2+ 2+ 2+ 6 6 0
2 2 0 1 2+ 4 4 0
2 2 0 2+ 1 4 4 0
2 2 1 2+ 0 6 8 2
2 2 2+ 1 0 6 8 2
2 2 1 0 2+ 6 8 2
2 2 2+ 0 1 6 8 2
2 2 1 1 2+ 6 11 5
2 2 1 2+ 2+ 6 10 4
2 2 1 2+ 1 6 6 0
2 2 2+ 1 1 6 6 0
2 2 2+ 2+ 1 6 6 0
2 2 2+ 1 2+ 6 6 0

22

Double Disjoint Transposition Cases (cont.)

x y a b c Alyssa Gates Difference
3+ 3+ 0 0 0 10 8 -2
3+ 3+ 0 0 1 10 12 2
3+ 3+ 0 1 0 10 10 0
3+ 3+ 0 1 1 10 14 4
3+ 3+ 1 0 0 11 14 3
3+ 3+ 1 1 0 11 11 0
3+ 3+ 1 0 1 11 10 -1
3+ 3+ 1 1 1 11 11 0
3+ 3+ 0 0 2+ 10 12 2
3+ 3+ 0 2+ 0 10 10 0
3+ 3+ 0 2+ 2+ 10 15 5
3+ 3+ 2+ 0 0 12 10 -2
3+ 3+ 2+ 2+ 0 12 13 1
3+ 3+ 2+ 0 2+ 12 14 2
3+ 3+ 2+ 2+ 2+ 12 15 3
3+ 3+ 0 1 2+ 10 15 5
3+ 3+ 0 2+ 1 10 14 4
3+ 3+ 1 2+ 0 11 11 0
3+ 3+ 2+ 1 0 12 12 0
3+ 3+ 1 0 2+ 11 10 -1
3+ 3+ 2+ 0 1 12 10 -2
3+ 3+ 1 1 2+ 11 11 0
3+ 3+ 1 2+ 2+ 11 15 4
3+ 3+ 1 2+ 1 11 11 0
3+ 3+ 2+ 1 1 12 15 3
3+ 3+ 2+ 2+ 1 12 15 3
3+ 3+ 2+ 1 2+ 12 15 3

23

	Abstract
	The Problem
	Initial Algorithm
	Gates' Algorithm
	My Algorithm
	Statistics
	Conclusion
	References
	Statistical Analysis

