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Abstract: The topic of the paper is the Prime Number Theorem and its connection with the

Riemann Hypothesis. The Prime Number Theorem states that ni(x) ~ Li (x), where 1(x) is the

number of primes that are less than or equal to x and Li(x) = f; 1_111(5 dt. The Riemann Hypothesis

" provides a good bound for the error and yields an explicit formula for ni(x) instead of the
asymptotic formula. This formula relies on the location of the roots of the Zeta function:

{(s) = Y%, n~% Inhis one and only paper on number theory, Riemann proposed that all non-
trivial zeros of the zeta function on complex plane lie on the line s = Y4, which is known as the

critical line. The well-known hypothesis still remains unsolved.
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I. The Prime Number Theorem

1. Introduction

Due to their random behavior and their great importance in number theory and abstract
algebra, prime numbers have been an interesting topic for mathematicians to study since the
beginning of mathematics. The proof of the infinitude of primes appeared around 300 B.C.E. in
Buclid’s “Elements”. Then, in 1737, Buler proved the divergence of the harmonic series of
primes, Towards the end of 18" century, two mathematicians, Gauss and Legendre, working
independently, came to the same conjecture about the distribution of primes. Both conjectured
that if we let 7r(x) be the mumber of primes less than or equal to x, then 7r(x) is asymptotically

equal to x/In x:

Inx

This became known as the Prime Number Theorem.

In 1896, the conjecture was proved independently by Jacques Hadamard and Vallee
Pousin at the same time. From that point, the well-stated Prime Number Theorem was officially
established. The proof is non-elementary since it uses complex analysis. However, around
1948, an elementary proof emerged as a result of the “collaboration” of two mathematicians,

“Erdos and Selberg.) These proofs will be discussed later in the paper.

2. The Improved Prime Number Theorem

In addition to the logarithm form presented in the Prime Number Theorem above, Gauss,
introduced an alternative function to estimate the prime counting function, 7(x). Using the

logarithmic integral function

. s 1,
Lz(x)=f2~l~§dt,

Gauss stated that (x) ~ Li(x).

! There was a small debate between the two mathematicians. They did not actually work together, but they used each
other’s ideas to build a cancrete proof of the Prime Number Theorem.
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Below is a table taken from Edwards of some values of 7¢x) and its approximations:

x (x) - x/lnx Lifx)
500 95 80.4 101.7
1,000 168 144.7 177.6
2,000 303 263.1 314.8
500,000 41,638 1 38,1028 41,6006.2
1,000,000 78,498 |  72,382.4 78,627.5
1,500,000 114,155 | 1054779 | 114,263.0
2,000,000 148,933 | 137,848.7 | 149,054.8
2,500,000 183,072 | 169,700.9 1 183,244.9
3,000,000 216,816 1 201,151.6 | 216,970.5

Based on the numerical evidence, we can see that the relative error of the approximation
of w(x) by Li{x) appears to be smaller than the one by x/In x. So the logarithmic integral seems to

give a better asymptotic estimation of 7(x).

Overview of the Proofs of thé Prime Number Theorem
1. Riemann’s Paper on Number Theory: '

In 1859, Riemann published his only paper on number theory titled “On the Number of
Prime Numbers less than a Given Quantity”. Although the focus of the paper was to estimate the
number of primes less than a given number, the ideas presented in the paper have been inspiring
many mathematicians in various fields for over 100 years. It is not only the result of the paper,
but also his researching methods, such as studying a function in a new region and trying to build
an explicit formula as a representation of a function, that became the foundation of later
investigation in the mathematical world. In fact, his results given in his paper shed lights on the
proof of the Prime Number Theorem about 40 years later.

Among his results was the conjecture of the location of the zeros of the zeta function; it is
now known as Riemann Hypothesis. Although it remains unsolved, even until now,
mathematicians have been attempting to prove the hypothesis with the belief that the proof of the

Riemann Hypothesis will reveal innovative techniques for further research.



2. Introduction of the Riemann Zeta function

a. The Zeta function:

Starting with Euler’s formula for the sum of the reciprocals Em n™", where s is integer

ne}
and » ranges over all positive integers, Riemann considered s as a complex variable and studied
the function on the new complex plane.
Using the factorial function and contour integration, Riemann derived a formula for

2 1n'5 that “remains valid for all 52
il

_T(=s) pre(=n) dv
L(s)=—— f )

¥ ] x
This contour integral implies the path of integration; it starts at +oo, goes to the left along the
positive x-axis, circles around the origin in the counterclockwise direction, and moves back to
+o0in the positive x-axis.
Based on the formula (1) of Z(s), for Re(s) > 1, £(s) is equal to Dirichlet’s function®

1 1 LI
Z(s)=1+§+—3.7+&7+...=z”=1n . (2)
Furthermore, as Re(s) > 1, Riemann observed that £(s) can be expressed as Euler

product formula*

E(s)= HP(_IW%"S (3)

where p ranges over all primes (p =2, 3,5, 7, ...).

The function &(s)is now known as the Riemann Zeta function due to Riemann’s original

contributions for the function.

? The factorial function is defined as: 5= I1(s) = f . ¢ x" dx . The notation T1(s) was introduced by Gauss.

* Dirichlet’s function is different from Euler’s because its domain is real numbers that are greater than 1 rather than

integers only.
* Because Buler product formula ranges over all prime numbers p, the equation in (3) shows the primary connection

between £(s) and prime numbers.



b. Characters of the Zeta function:
In his paper, after defining the zeta function, Riemann analyzed its properties. In this

section, a few important properties and sketches of their proofs are shown.

Property 1. &(s) is analytic and defined to the entire complex plane except for a simple pole at
s=1.
Proof:

Because €' grows much faster than x* when x - oo, the integral in (1) converges for all
values of 5. And since convergence is uniform on compact domains, the integral defines a

complex analytic function. Hence, the overall function, £(s), is defined and analytic on the

entire complex plane except the possible points where s = 1, 2, 3, ..., where Il(~s)has poles.5

Afs=2,3, 4, the formula (2) shows that £(s) has no pole. In facts, at these points, the
function {(s)= Ew ln" converges. And ats =1, since we already know that the harmonic
series Em ln"s diverges, {(s) has a simple pole at s = 1.

In short, £(s) is shown to be analytic and defined to the entire complex plane except for a

simple pole at s = 1. ' Q.E.D.

Property 2: The relationship between £(s) and £(1~s) is established through the formula:
51 o3| ST 6
E(8) = II(=$){(27) 23111(»?)5 (1~5), 31— 5), )

which is known as the functional equation of the zeta function.”

* In complex analysis, a pole of a function is basically a point where the function approaches infinity as the variable
approaches that point.
§ Since for integer k, sin(k /7 ) = 0, the formula suggests that the roots of £(5) includes all negative even integers

s = - 2n. However, positive even integers can’t be the roots of £(s5) because when s = 2n, sin{ns)I1{s) is regular,
which means £(5) becomes a convergent series and it is different from 0. The formula (4) also indicates that £(s)
has no odd negative roots, which helps the process of locating the zeros of £{s).

7 Riemann derived this formula using Cauchy’s theorem and Cauchy integral formula.
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By making use of the basic properties of the factorial function, the formula (4) can be

rewritten as
H(%-l)ﬁrmjlzé’(é’)=H(—];—_i—f—i)n_(l_'%é(l_s)' (5)

Since the value of the function on the left-hand side remains unchanged when s is
replaced by (1 —s), the formnla in (4) is referred as the functional equation of the zeta function.
Q.E.D.

Note: In his paper, Riemann also showed another proof of the functional equation. He borrowed

1+29(x) 1

I+ 21/)(1) Vx
X

w 2
where (x)= E e ™, from

n=1

the functional equation of the theta function,

Jacobi. Then he derived another symmetrical formula:

H(i“ 1)”“"’25 @)= [“peotex AL
2 : .

s(1-5) ©

Because the right-hand side of formula stays unchanged when (1 - 5) is sabstituted for 5 and vice

versa, it proved the functional equation of the zeta function.

The symmetrical form of the functional equation. leads to the introduction of a new

function. Riemann defined the function
&(s)=n(—§)<s~1>x%é(s>. (7)

By this definition, &(s) is an analytic function of s, which is defined for all values of 5. In other
words, £(s) is an entire function. Furthermore, the function &(s) also verifies the functional
equation of £(s); from (5) and (7), we can get &(s)=E(I-s), which is equivalent to the

functional equation of zeta function.



Property 3: The zeros of &(s) have their real parts between 0 and 1.8
Proof:

Because in the formula of E(s) at (7), other factors beside Z(s) has only one simple zero
at s =1, the roots of £(s) are the same as the roots of {(s). Then as it is proved in Properties 2

that £(s) is zero-free on the half-plane where Re(s) >1, £(s) has no root on that half-piane

either.

Moreover, the equation £(s)=E£(1~s) implies that (I — p) is a root of &(s) if and only if
p is aroot of £(s). Hence, since it is shown that £(s) has no root on the half plane Re(s) >1,
&(s) does not have any root on the half-plane Re(s) < 0. Therefore, all the roots of £(s), if

existing, have to lie in the strii) 0 <Re(s) <1 Q. E. D.

3. Complex Analysis Proof by Hadamard and Valle-Poussin:

In 1896, the Prime Number Theorem was proved for the first time by two
mathematicians, Jacques Hadamard and Charles Jean de la Vallée-Poussin. Although they
worked independently, their proofs were similar and came out to the public around the same
time. Therefore, they both got credited for proving the Prime Number Theorem.

Due to its historical significance, a sketch of the proof is laid out in this section. The
proof followed the ideas in Riemann’s paper and made great use of the zeta function and its
properties discovered by Riemann and other mathematicians over time. It incladed two main
parts. The first one is related to the distribution of the zeros of the Riemann zeta function and the
second one is the derivation of the Prime Number Theorem using the result from the first part

and a few functional transformations.

a. First step of the proof of the Prime Number Theorem:

In his paper, Hadamard claimed that £(s)# 0 when Re(s) = 1 and his proof is shown

b_e}ow.g

8 This fact helps to locate the roots of the zeta function.
? Although both proofs are intricate, the one by Hadamard is simpler and it is why I chose to re~-demonstrate it bere.
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Lets= ¢ + if and consider s > 1, Then

In|&(s)] = Re(ln L(s})= E;cnn"" cos(tInft),

1
—ifn = p™, pisprime
where ¢, = § ;5 P pisp .

0 otherwise
It follows that

111\2;’(0)3 Eo+i) ' E(o+ i2t)| = E; ¢, 77 (3 + 4cos(tlnn) + cos(2tinn)).
Because 3 + 4 cos t + cos 2t = 2 + 4 cos t + 2(cos t)* = 2(1 + cos t)” = 0,
1n|z;(a)3§(a+ it (o + iZf)l = 0.
Then E(oY E(o+it) E(o +i2t) = 1.

(or+zr)

Thus, ((o-1E(o))

|f;( +t21)|z-—l (8)

for o > 1 and for all values of 1.

S;ince Z(s) has a simple pole at s = 1, we have

limg_, (o~ 1)T{(s) = 1.
Suppose ¢ # 0 and assume S(1+if) = 0.
Then we would have |

ACALD NS

lim
o1 g-1
In addition, llm % = oo, Hence, (8) implies 11m !C(a+21t)[ == ¢0, And because {(s) has
O’ —

~ only one simple pole at s = 1, it indicates that ¢ has to be 0, which contradicts to the assumption

that ¢ 5= 0. Therefore, {{1+if) # 0. QLD



b. Second step of the proof of the Prime Number Theorem:
= 1: Show that W(x)~
Since no one had been able to prove the theorem directly from rréx) till his time,
Hadamard decided to approach the theorem indirectly. He used another function that behaves

similar to 77(x) but is easier to estimate in his proof. He introduced the step function W(x}, which

starts at 0 and has a jump of In p at each prime power p"."" So the formula of W(x)is

Y=Y Inp ®
| y . 1 pesm|  T'(s)|x'ds
By evaluating the definite integral Ey f ) -—E — Hadama1d obtained a representation
. a-—in S
for W{x):
xP x7 B
Yixy= x— % —+ = Znn e 10
(x)= x Ep 2 0 (10)

where x > 1 and p ranges over the zeros of the Riemann zeta function.

Ly PO EED gy
o) Zn2nGnr) £0) D

Then f W(1)d: = M—z

W) dt - P
Consider f g ¢ )2 é . By (11}, it will be equal to 2 E plus “some other terms”,
A e p(p+1)

which will go to 0 as x goes to infinity.

Since E,) o+ D)

uniformly and the limit as x goes to infinity can be evaluated termwise.

,r)-l

converges

converges absolutely and ix” l| < 1, the series E oiD
Fplp+

o1
Moreover, since limy_, o (x 5 = (0 due to the fact that Re(p) < 1 (from step 1), we have
PP+
£-~1
limy, 0 2Y —— =0,
plp+1)

2

Then it follows that f ; Wrydt~ % and we will be able to show W(x)~x. Q.E.D.

" This W(x) is different from the exponential function 3 (x} in &,
1 The function W(x) was first considered by Chebyshev.
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x  2: Deduce the Prime Number Theorem'”

Since the approximation W{x) ~ x is shown above, proving the Prime Number Theorem
is equivalent to deducing () from W(x). The technique described below is the one that was

used by Chebyshev in 1850.

We need to define a new prime-counting function 8(x). 8(x) represents the sum of the
logarithms of all the primes p less than x.'* Then 8(x) and W(x)are connected through the
formula _

Wix)= G(x)+ O(x")+0(x")+0(x")+...

‘We notice that for n sufficiently large, X' < 2, then @(x) = 0. Thus, the series above is a

) inx
finite sum and there are at most »]w»i nonzero terms and
I

Inx

B(x)y < W(x) < B(x) + 0(x*?) R
n

. I Inx
The W(x)—0xz)—= < 8{x)<W(x).
1en (x) ( 2) = (x) (x)
N 12 1
And W(x) 6(x7)Inx - A(x) - Wix) . _ (12)
S X x In2 X X
Since W(x)~xand (x) < ¥(x), li111x_,a,)5‘-?—(li:§1 =0. Hence
X
142 12
O(x )lnxm 9(;; ;> lzgxl —~0asx » ® (13)
x Y LY

From the inequalities in (12), the limit in (13), and the result that W(x) ~ x, we conclude
0(x) ~x.
=) _4

X

Given ¢ > 0 and let X be a number such that < ¢ whenever x = X. Then for

y>xz X, we get

w(y)-7(x) = [

y dO(t) =[g_@]"+ fy d@(;;)
Int Inz Y{Inn)

X

12 This deduction is taken from Edward’s book
I x itself is a prime, 6(x) =~;~[9(x +g)+ 0lx— )}



is at most

(1+£)yﬂ(l—£)x y(1+£)rd.t_ g y Idi
: +f-*‘ (Int)*t lnx I+ 8){[1111‘] f-" (ll‘lf)zf}

Iny. Inx

=28i+(l+s){fl ‘#} 2£rm+(1+.e)r1,;(}:) Li(x)]

Inx Int

and at least equal to —25{‘— + (1= ) Li(y) - Li(x)].
nx

Therefore, for a fixed x, E.(y) is at most
Li(y)
26 (L4 &) Li(y) - LiCx)]+ 7r(x) 262 4 (14 e)Li(x)+ ()
In x : =l+e+ n.x _ =l+2s
Li(y) Li(y)

and is at least 1 — 2¢ for sufficiently large y. Because € is an arbitrary number, this implies

;r((y )) ~+ 1, or equivalently, #(y) ~ Li(y). The ane Number Theorem is proved.
Ly

Q.E.D.

¢.  Other proofs of the Prime Number Theoren:

After the first proof of the Prime Number Theorem by Hadamard and Poussin, more
proofs came out; some of them were shorter, but they all involve difficult complex analysis.
In 1949, Atle Selberg and Paul Erdds found the first elementary proof. Since the proof avoided
the use of complex analysis, it was considered “clementary”. However, it was less natural and
less intuitive than the proof via Riemann’s zeta function while still remaining quite elaborate and
not easy to comprehend. Therefore, the analytic proofs were still preferred. |

In 1980, nevertheless, a very simple proof of the Prime Number Theorem was given by
D. I. Newman. Modifying Tauberian argument, Newman constructed a proof with a simple and
concise structure that does not require much background of complex analysis; he barely used any
heavy machinery, but the basic Cauchy’s theorem. Hence, this proof was welcome by a larger
audience and suitable for readers who would like to learn about the proof of the Prime Number

Theorem, without a solid background in complex analysis.
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II. Relationship between the Prime Number Theorem and the Riemann Hypothesis:

1. The Riemann Hypothesis:

In his paper on number theory, while studying the zeta function and trying to find a good
estimate of 7r(x), Riemann proposed that it is likely that all non-trivial zeros of the Riemann zeta
fonction lie on the same line where the real part is ¥%4. This statement is now known as the
famous Riemann Hypothesis. It remains as one of seven unsolved millennium prize problems of
Clay Mathematics Institute; 1 million dollars is allocated to give to the person who can solve the
problem. It is believed that a proof of the Riemann Hypothesis will shed light on the mystery of
the distribution of prime numbers. However, the failure of the Riemann Hypathesis, if found,
would create chaos to the distribution of prime numbers. Therefore, due to the significance of its

validity, the Riemann Hypothesis is considered as one of the most important unsolved problems

of mathematics,

2. The Relationship between the Theorem and the Hypothesis:
a. The explicit formula for w(x):

We already know that prime numbers do not follow any pattern and seem to behave
randomly, so it is quite difficult to predict their value given their Jocation in the sequence of
primes. Fortunately, Riemann observed that their distribution turns out to be closely related to
the behavior of his zeta function, £(s). Specifically, his goal for his paper is to find an explicit
analytic expression for m(x) so that we can get the exact value of m(x) instead of the asymptotic
approximation in the Prime N’umbéx Theorem. Assuming the Riemann Hypothesis is frue, he

achieved his goal and his construction of the explicit formula is shown below.

« Introduction of the Prime-Jumping Function Jo:

Taking the log of both sides of Euler product formula in (3), we get

In &(s) 32,[2(;1;)1’} Re(s)>1) (14"

" Riemann originally denoted the function f(x). However, we use f() for any general function. Thus, to avoid
confusion, Edwards came up with the new notation J(x) and this paper will follow that.
3 We also need to use the Faylor expansion of In (1 — x), which is equal to - x — (112)x% = (1/3)x% — ... to derive that

form.

I1



In order to rewrite this equation under integral form, Riemann defined a new function
J(x) that I would like to refer as the Prime-Jumping Function. J(x) is a function that starts at 0
when x = ( and increases by a jump of at at primes p, by a jump of 1/2 at prime squares plbya

jump of 1/3 at prime cubes p°, and so on. J(x) can be expressed in the form
1 -1 L
J(x) =— —+ -
( ) 2 12;3%.\: n Ep"sx I’LJ
Then ' mE(s) =5 :J(x)x-H dx
And Inéts) [T rx dx | (15)
§ 0

Applying Fourier inversion'® to (15), Riemann concluded

i

J(x) = J-m g (s)x gs with a > 1 (16)
27 e 5

and J(x) = L1 rt*limi[lm;(s)]xsds , (17"

2oilnx v o de|l 5
This is the representation of J{x) in terms of {(s). The next step is to derive a formula

that is easy to evaluate for J(x) .

= Riemann’s Formula for J(x):

First, Riemann expanded In £(s) using 2 identity formulas of £(s):

E(s)= H(g] 75 (s~ 1DE(s)

and  E(s)=EO)II, (1 - %)

3.6 To transform J(x), Riemann used the Fourier theorem, which states that a function f(x) can be written as a
superposition of exponentials
_ f(y =, e(v)e¥*dy
if and only if the coefficients g(y) is defined as
1w i
£(y) = 2 [ f(z)e dz,

In our case, z = In x; f{{x) = 2re"e™; and g(y) = @ where y = Im(s).

"7(17) is derived from (16) by integration by parts.
12



Combining these two, we get:
sy s
mi(e)=n&(s)-1n H(—z—) + 5 Inz - In(s~1)

h) 5 S
= In&(0) +2P1n(1mg) ~In H(5)+511m ~In{s—1) 1s)

Substituting (18) back to (17), we obtain an explicit formula for J(x), which is the sum of five

terms. The value of J(x) depends on how the five terms are evaluated.

1 o d
First termy; o ————
2ailnx o= ds

In §(0) ””w 1115(0)}6 ‘ds=1né&(0).

,{1'-‘1‘0':l

Because £(0) = T(0)x™" (0 -1)L(0) = £ (0) = -;:,1115(0) =-In2.

And this is the numerical value of the first term in the Riemann’s formula for J(x).

‘ s
Injl——
1 a+iao_£f; zr” ( p] s

1
Second term: ————{ 5.
2mi lnx ™ o ds s

Using contour integral, we can transform this term to

- E [LiCx™)+ Li(x"™™)]

T =0

This expression reveals the initial connection between J(x) and Li(x) and equivalently, the zeta

function £(s)and the Prime Number Theorem. 18
s s
_ —InH(-—) _ inH(——)
Third term: —w}wmkw af'mi e A2 g L ﬁ‘mi Z (19)
2ailnx == ds s 2ailnx o™ ds §

" Riemann used a different from of the log integral function. He defined
. 1
Lifx) = foxmdt
I will use this formula fo derive the explicit formula of T(x), specifically in part a and b only. In other sections, I still
follow Gauss’s notation.

13



. s = s 5 1 ,
Using InXI| —]= —In{l+—|+=In[1+=]{, we can conclude that (19) is equal to
’ (2) E{ ( 2n) 2 ( n)} (P)iseq

f‘” . 19
(" -Dlint

s

_ —nmw _

Forth term: .._MIMMM}M M_! _.(_i_. 2 sd‘g=___1__i a+f _d_[M “ds
2ailnxy ™= ds| s 2ailnx Y e del 2

e L o g 0.2

2milnx v e

El_ﬁi’_l_i@j.ﬂ;l}l -—-H}M_w}__, miiwi MjlxstmLLfmziwi[ln(S"I)
27 Inx Y = ds 5 | 2aiInx~ = ds s

Riemann proved that for x > 1, the value of this definite integral is the logarithmic integral

1 1 paied[In(s-D] . e dt px dt} :
e e A L =lim ——t — | = Li(x).
2ailnx ot ds[ § ] i [f" Int fl” In¢ )

The proof of the equation is related to Fourier inversion and contour integration. Details can be

found in Edward’s book. This term is also considered as the principal term of J{x).

In short, putting pieces together, we obtain an analytic formula for J(x/} |

J(x) = Li(x)— 2 [Li(x”)+Li(xl"’)]'+ | A (20)

2
Im p>0 0 t(t _1) In¢

where p runs over the complex roots of the zeta function and x > 1.
In fact, this fornmla is the main result of Riemann’s paper. Since it uses zeros of the zeta
function to evaluate the Prime-Jumping function J(x), it is the bridge that connects the Riemann

Hypothesis and the Prime Number Theorem.

¥ The argument requires the condition that the termwise integration is valid for the equation. The proof can be

found in Edwards’ book.
2 The differentiation inside is equal to 0 because we differentiate with respect to s and the term s already gets }

cancelled from the previous step.

14



= The Expression of 7z¢x) in terms of Jix)

Based on the definition of J(x), Riemann found a relationship between 7(x) and J(x}
1))+ 2+ S+ LW+ = S ),
2 3 4 il
Then, by the Mobius Inversion?', he inverted the order of the equation and got

x(x)mf(x)méf(x/)—c)—%.f(i/;)—... (21)

1/

The first sum is actually finite for each given x since x™ < 2 for a sufficiently big value of »,

which leads to 7(x*/™) = 0. Then it follows that the second series, the representation of m(x) in

terms of J(x}, is finite also.

= The Explicit Formula of t(x):

Substituting (20) to (21), Riemann obtained an explicit formula of the Prime-Counting

function 7(x) as he desired. This formula includes 3 types of terms:
- The stable terms, which do not grow as x increases: They are the last two terms in (20).
- The terms that grow steadily as x increases: They consist of the terms Li(x).
- ‘The terms that grow but oscillate in sign as x increases: They come from the sum of
Li(x?) over the imaginary part of the roots of zeta function. Because of the oscillation of

these terms, it hinders the calculation of the explicit formula of ()
In addition, the fact that (%) is expressed in terms of a sum over the zeros of the

Riemann zeta function implies that the magnitude of the oscillations of primes around their

expected positions is controlled by the zeros of the zeta function.

i

! The Mobius inversion formula interchanges the positions of two functions in an equation by following the rule
g(x) = ¥, f(nx) @ f(x) = Y2, p(n}g(nx) provided that both §, f(nx) and ¥, g(nx) converge absolutely. j1(n) is
the Mobius function that is defined in the next section.

15



b. Riemann’s Approximation of 1t(x)

Because the oscillating terms E [Li(x”)+ Li(x””)] are hard to evaluate and some of the
Im >0

terms cancel each other due to opposite signs, Riemann dropped these terms from the formula
and suggested an approximation of 7(x):
x(x)~Li(x)-lLi(_x%) miLi(x%)—iLi(x%)+ lLi(x%) - lLi(.x%) o
2 3 5 6 7
or in a shorter form, m(x)~Li(x)+ 2m ZmLi (x% ) (22)
N n

where p(n) is the Mobius function

1 ifn is a square — free integer with an even number of prime factors
u(n) = { —1ifnisasquare ~ free integer with an odd number of prime factors
0 ifnis not square —~ free

This formula is called the Riemann’s formula for r(x).

Furthermore, in fact, the first two terms in (22) is the approximation of 7(x) in the

Improved Prime Number Theorem
. 1.y . L x 1
7w(x)~L '—mL(x 2)=L1 -Li2y={ —dt.
CO~Lilx) = Li ()-Li2)= [, —

Therefore, it indicates that the formula in (22) gives a closer estimate of (x). The graph
below includes all approximations of 7 (x), which makes it clear how distinctively good and

natural the approximation of m(x) in the formula (22) is.

16



Gl b
50 F
40 -
1138

i R(x) is the
sk Riemam’s

g approximation

; of (x) in (22)
1 - '

|

The efficiency of Riemann’s formula for 7(x) is also illustrated by empirical data

provided by Leluner as follows:

X Riemann’s error | Gauss’s error
1,000,000 30 130
2,000,000 -9 122
3,000,000 0 155
4,000,000 33 206
5,000,000 - 64 125
6,000,000 24 228
7,000,000 - 38 179
8,000,000 -6 223
9,000,000 -53 187
10,000,000 88 339
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c. The error term of the Prime Number Theorem:
In his paper, Riemann also set up the connection between the relative error in the
asymptotic approximation of m(x) and the distribution of the complex zeres of the Riemann zeta
function. Assuming his hypothesis about the nontrivial zeros of the zeta function is true,

Riemann was able to give an exact analytical formula for the error of the approximation of m(x)

a{x)— ZL %Li(x% = ZL EﬂLi(x%) + “some lesser terms”,

Moreover, it is stated that the Riemann Hypothesis is equivalent to a much better error
bound in the Prime Number Theorem. In fact, in 1901, assuming the validity of the Riemann
Hypothesis, von Koch was able to use Riemann’s foronula of w(x) and successfully proved this

statement; additionally, he showed that

m(x)—Li{x)=0 (\/; In x).

It implies that the approximation of Li(x) to 7w(x) is square-root accurate. And this error bound is

considered as the best possible one that can be obtained.

Furthermore, although Riemann did not prove the Prime Number Theorem in his paper,

the Prime Number Theorem can be implicitly derived from his argument. Riemann found out

that
() = Li(x) + O(x%).
This implies —g% =1+ O(x% In x) =1+ 0(1), which actually leads to the Prime Number
ix
Theorem.

The Verification of the Riemann Hypothesis:

As it was mentioned earlier in the paper, £(s)is nonzero throughout the half plane
Re(s) > 1. In addition, it was shown that the zeros of {(s) are classified into 2 types: the trivial

zeros, which are located at each even negative integer, and the nontrivial zeros, which stay

18



strictly inside the strip 0 < Re(s) < 1.2 The Riemann Hypothesis concerns about the non-trivial
zeros and asserts that all non-trivial zeros should lie on the same line called the critical line,

Vs + it, where tis a real number and i is the imaginary anit.

1. Location of trivial zeros
Since the function x(e” — 1)'! is anaiytic near x =0, it can be expanded as a power series
x » B x"
= ' 23
e" -1 Z"“’O n! @3)

where the coefficients B; are called Bernoulli numbers. It is noticed that the odd Bernoulli

numbers By, are all O except the first and there is no simple formula for the even Bernoulli

numbers By, but they can still be found successively.

Whens=—n{n=0,1,2,...), we can substitute (23) into the defining formula of zeta
fanction in (1) and obtain |

py = M) e () dx
= J

e -1 x

TI(n) B x" (—x)" dx c B o1 e
- " i IT m (] de
2l j‘|.\:§=62m zm (n) mt ( ) 20 fﬁ *

m! X X
e ! Bu+1 (___ 1)" - (_l)n BrH-i .
(n+D! n+l

Then £(-21) = (~1)*" "i?"z"”’li Thus, £(-2n) =0 foralln =0, 1,2, ...
4

Therefore, all even negative integers are roots of the zeta function and they are classified as

“trivial zeros”.*”

2. Methods of locating the nontrivial roots:
The nontrivial zeros of the Riemann zeta function are proposed to lie on the same line
where the real part is Y. Because no proof for this hypothesis has been found, mathematicians

have been analyzing the zeta function numerically and a lot of nontrivial zeros have been located

* The strip is known as the critical strip.
2 They are called trivial because they do not carry significant mathematical meaning.
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on the critical line while no counterexample—nontrivial zeros falling off the critical line has yet

been detected. This section will show two techniques of finding the nontrivial roots manually.*

a. FBuler-Maclanrin Summation:

E(s)is real-valued on the critical line since with s =1/2 + it, we can express £(s) as follows

3/2
( +zt) 4f [ 71”( )] '”“cos(zlnx)dx

Thus, this implies that we can approximate the zeros by locating the interval where the function

changes sign.

1 . LR ¢ (I R P pllstat] st S(S -1)
§(2+If) ZH(Z 1) (s~1)E(s) = 5 ——(s)

_ eRcInJr[lewl}muU-‘i ~* 114 zImIn.rr[sn‘Z——l] —:.'IZC( & ”)
2 2

(24)
Since the first term is always negative, the sign of the function is opposite to the sign of

the second term, which is notated as

Z() = e"“”f;( »Ht)
(25)

where 9(t) =Im lllﬂ.’(—i-—%) ———2—1113?: Then, in order to determine the sign of &(s), it is sufficient

to evaluate (¢)and § (2 + zr)

7
By simplification, #{f) is computed as (¢} = Ein LoLx —t— !

. Since
2w 2 8 A8t 57601'3

+

the terms decrease very rapidly, the close approximation of ©#)is

R PURA LI S S (26)
2 27 2 8 48

M In fact, the algorithms in these methods were later used as a reference to build computer programs to generate
more roots at a faster rate.
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For £(s), applying Buler-Maclaurin summation to the series £(s)= Ein”" , we get?

= 1-s
C(S)“‘EN 'y N + IN"S +=2 B 2 gN~ w%i—ws(s+1)...(s+2v»-2)N"“”2"*'1
el s=1 2 2 (Zv)f (27)
where B; is the Bemoulli polynomial that satisfies B, (x+1) — B, (x) = n © (derived from

f MB” (t)dt = x" ) and N is a number that is large enough to make the terms of the series
decrease rapidly in the magnitude.
The close approximations of ¢)and £ (% + it) in (26) and (27) determine the sign of Z(1)

and the sign of £(¢) also. Then, the interval where &£(z) changes signs can be narrowed down,

which leads to comparatively good estimations of the non-trivial zeros of &(z).

b. The Riemann-Siegel Formula:
Although it starts out with the same expression of & (% + it) in (24) of the Euler-

Maclaurin Summation method, the Riemann-Siege! Formula method put Z(#) in a different form:
Z(t)= 22 ( ) V2 cos 19(t)—lhm]+R
(28)

e--ll?(r) ~if2 ( x)min'2+ite—Nxdx
4.

; N is the integer '
(2.7[,')”2(2.7]}')” -11:.’4 g

where the remainder term & ~ 1
e -

part of (1/21)"? and L; is a line segment in the complex x-plane which has slope 1, length

(2m1)"?, 2 and midpoint on the imaginary axis at 1(271"0” ?

The Riemann-Siegel formula is used to evaluate the numerical value of &, and thus,

ultimately the value of Z(2) and & ( + II) Fo a first order approximation, carried out by the

Riemann-Siegel formula, the remainder R is:

;o\ cosZn(p _p—Té)
R~ (-} ( ) where p is the fractional part of (r/27r)”2 (29
2x cos2map

S 1 . . . . . . . .
¥ Yraier-Maclaurin sumamation is a technique for numerical evaluation of sums that invoives the "Bernoulli
numbers.”
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Higher order approximations, which return better approximations, can be obtained by using the

higher order terms of the series expansion of the remainder R although it might get very

complicated.

3. Sample Computations

a. Euler-Maclaurin Summation:

The box below shows the summary of finding the approximation of £ (% + ISi)using the

Buler-Maclaurin Summation.

%= 1.00000

2% = +0.70427 -+ 0.06336i
3 = +0.34726 — 0.46124i
4% = +0.49199 + 0.08924;
| 5%=.0.34333 - 0.28657i

61 (s~ 1) =-0.10340 - 0.08839;

% 67 = +0.13689 — 0.15142i

By =+0.07761 + 0.06634i
By=+0.01372 + 0.00725i
Bs=+0.00349 -+ 0.00017{
Bz =+0.00072 - 0.00053;

C(—;-+ 181’) ~ 232922 - 0.18865i

2 9.2y

H18) ~9In—
T &

£ (é« 4 181') is negative. Because £ (%) is positive, we know that there exists one root p lying

between % and ¥ + 187, Repeating the process for multiple times, we can find the first root of the

1

zeta function, which is p = 14,1347,

On the other hand, ¥418)1s evaluated as:.

g =9.472452 -9 - 0.392699 + 0.001158 = 0.080911

Thus, Z(18) = &% (2.329 ~ 0.189{) = 2.337 + 0.0001, which is positive and implies that
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b. The Riemann-Siegel Formula:

Based on the formula (28) and (29) of Z(¢) and R, we compute the first order
approximation of Z(18) as follows.
(12m)"* = 1.692569, so N =1, and p = 0.692569.

4 COS m( 0.692569* —0.692569 flé

Then Z(18) ~ 2cos?(18)+ (-1 (_1_3_)
2 c0s{2720.692569)

= 1.993457 + (0.768647) M =1,993457 + 0.346197 = 2.339654

-0.353070
This is the first approximation of Z(18). Compared with the value obtained by Euler-Maclaurin

Sumimation, the Riemann-Siegel Formula gives better accuracy.

Although these methods are tedious, the fact that they have been used to Jocate a large

amount of the non-trivial zeros of &(f)on the critical line contributes to the plausibility of the

unsolved Riemann Hypothesis.

4. Attempted Proofs of the Riemann Hypothesis

The Riemann Hypothesis remains unproved even till now, and therefore it can only be
considered as a hypothesis. Because of this fascinating challenge and the importance of the
hypothesis, many mathematicians have been trying to prove it over 200 years. 1885 was the year
of the first significant failed attempt at a proof. Stieltjes claimed to solve the hypothesis by using
Mertens Conjecture, which states that the Mertens function M(r) is bounded by~/n and thus, |
implies the Riemann Hypothesis. Although this conjecture was supported by a large amount of
numerical evidence, it was disproved by Odlyzko and te Riele in 1985. Therefore, the Riemann
Hypothesis still stays as an interesting elusive problem that is waiting for a valid reply.
Fortunately, the good news is that there have been a lot of computational supports while no

counterexample has yet been found. -
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