Creating a Fun Program that is
Simple and Easy to Use

William J. Herrmann

Computer Science

Wittenberg University

A thesis submitted for the degree of
B.A., Computer Science

December 2011

This thesis entitled:
Creating a Fun Program that is Simple and Easy to Use
written by Wilkam J. Herrmann
has been approved for the Department of Computer Science

V0%

—
“ Prof. Kyle Burke

ﬁ‘&c«&:«- f’ﬁ;«ﬁg],/ﬁ%

Prof. Steven Bogaerts

i »
.’; &

"of.v Stepharie Little

December 8, 2011
Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above
mentioned discipline.

Dedication

To my family for their unending support of my endeavors and to the Wittenberg
Role-playing Guild for their overflowing enthusiasm.

Acknowledgements

I would like to thank first and foremost Dr. Kyle Burke, my advisor who worked
closely with me on this project and gave me a great deal of encouragement at
every step of the way. I'd also like to thank Jake Hsu, Chris McDaniel, and Chris
Stockhaus who provided feedback about the program’s user interface at various
points in the design process and taught me a great deal about how valuable user-
centered design is. I also wish fo thank Patrick Copeland for providing me with a
thesis template for WIEX, which was used to make this thesis look as professional
as it does. Finally, I'd like to give special thanks to Pinnacle Entertainment Group
for creating Savage Worlds and inspiring me to create the program I have made.

Abstract

I have created a program to assist in making characters for the Savage Worlds
tabletop role-playing game published by Pinnacle Entertainment Group. This pro-
gram was written in Java and uses a SQLite database to store character options.
Principles of user-centered design were followed to make the program intuitive and
easy to use and feedback from potential users was gathered. Programming de-
sign patterns were used to make it easier for me to implement and maintain the
program. Ultimately, this program has been a culmination of my learning here
at Wittenberg University and has been an opportunity for me to independently
expand my knowledge of Computer Science.

Contents

1 Introduction 1
1.1 What is a Tabletop Role-playing Game? 1
1.2 Purpose of this Program« . o 1

1.2 Exampleof Use o o o e 2
1.2.2 Program SCODE o e e e e 2
1.3 User-Centered Design 0o EEPE 2
1.4 Programming Language e 3
1.5 Database Framework e 3

2 Program Overview 4
2.1 Load Database Window e 4
2.2 Main Window e e e e e e 5
2.3 Summary Area e e e e e 5
2.4 Race Tab . . . o e e e e e e e e]
2.5 Traite Tab . . o . o e e e 7
2.6 Hindrances Tab e e 8
2.7 Bdges Tab 9
28 GearTab L. 9
2.9 Background Taby L e e e 10
210 File Memil . . o . o e e e e e e e e e e e e e e 11
211 Bdit Menmu e e e e e e e e e e e 12

3 User-Centered Design ' 13
3.1 Focus on Explorable Systemis e 13
3.2 Paper Prototyping, .. S 14
3.3 Gathering User Feedback oo 15
3.4 Computer Prototype o o o e e 16
3.5 Fipal Product e e 17

4 Programming Practices 18
4.1 Graphical User Interface Layouto o o oo 18
4.2 Accessing the Database 19
4.3 Model-View-Controller Architecture oo 19
4.4 Therltance e e e e e e e i9

4.5 Observer Pattern 22

4.6 Undo/Redo Functionality e e 23
5 Conclusion ‘ 25
5.1 Future Work e e e 25
5.2 Final Thoughts« . 0 e 26
Bibliography : 27

i

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4

4.1

Screenshot of the file chooser oo 4
Sereenshot of the main window o oo oo)
Screenshot of the snmmary area. oo 6
Sereenchot of the Racetaly 0 o o e e e 7
Screenshot of the Traits tab L e 7
Screenshot of the Hindrancestab e 8
Screenshot of the Fdgestab o 9
Screenshot of the Geartab o 10
Screenshot of the Backgroundtab oo oo 11
Screenshot of the File menu e 11
Screenshot of the Bdif menu« . Lo 12
An initial sketch of the user imterface. o oo 14
A picture of the completed paper prototype.o 15
Screenshot of an early user interface, used for interface testing. 16
Screenshot of the final user interface o o0 17
Modified screenshot demonstrating GridBagLayout 18

iii

Chapter 1
Intro duction

My thesis project involved creating a database program to assist in creating characters for
the tabletop role-playing game Savage Worlds, published by Pinnacle Entertainment Group.
The working title for this program is “Wild Card Creator,” because the main characters in
Savage Worlds are referred to in the rules as “Wild Cards.”[3] 1 specifically built the program
for the “Deluxe Edition” of Savage Worlds, published in 2011, and am referring to it whenever
I use the term “Savage Worlds.”

1.1 What is a Tabletop Role-playing Game?

Tabletop role-playing games, like Savage Worlds, are sometimes referred to as “pen and
paper” role-playing games because they typically are played without a computer and the
players’ characters are often written out “using a pen and paper.” These games are played
with a group of people collectively working together to create a story with the action imagined
or represented by miniatures, rather than acted out. One player is the “Game Master” {GM)
who sets up the story and facilitates game play while the remaining players each describe
the actions that their character is taking in response to the situation. Hundreds of tabletop
role-playing games exist, the most well-known of which is Dungeons & Dragons.

1.2 Purpose of this Program

Each role-playing game includes a set of rules for how to create characters, wkich can
then be used to play the game. In recent years, it has become increasingly common to create
these characters using computer software. A computer program is able to store all of the
rules provided in the rulebooks and keep track of the various options available to a character.
Using a computer program also insures that errors are not made and allows the user to print
typewritien character sheets that are casier to read than handwritten ones. Often times,
players are able to produce characters much more quickly with a character creator program
than they would if they were flipping through books and copying down character options by
hand. Commercial programs like this already exist such as the Dungeons & Dragons Character

Builder, by Wizards of the Coast, and Heroforge, by Heroforge Software. Neither are built to
support the Savage Worlds role-playing game.

1.2.1 Example of Use

In role-playing games, characters typically consist of statistics for the probability that they
will succeed at certain types of tasks as well as any special talents or drawbacks that they may
possess. For instance, Savage Worlds has 109 “Edges,”* or special talents that a player can
choose for their character to be proficient at. Many of these have prerequisite requirements
that must be met before a character can gualify for it. So a character might be able to take the
“Fleet-Footed” Edge, making his pace much faster, if his Agility attribute is already sufficiently
high.[3] '

A character creator program would be able to help players quickly determine whether the
character qualifies for a particular Edge, make a note of the benefits the Edge provides, and
ensure that no errors were made. Although this is simple enough to do manually, using a
computer program is faster and prevents mistakes such as giving the characters options that
they do not qualify for.

1.2.2 Program Scope

Savage Worlds is special in that it is a role-playing game system that is designed to be used
for virtually any genre, including fantasy, sci-fi, or pulp. The “core hook” (the most recent
of which is Savage Worlds Deluze) contains rules and character options for use in any genre,
which have been included in this program.

Additional “setting” bhooks have been produced, providing a specific game world that the
players can set their games in. These settings typically come with additional game options
that are supplemental to the core rulebook. For instance, Deadlands is a Western-Supernatural
setting and the book for it containsiadditional character options to make it easier for a player
to create gunslingers and other characters for use in the setting. Although I hope at some
point in the future to provide the ability to create characters in supplemental settings such as
Deadlands, users are currently restricted to creating characters using the options from the core
rulebook.

1.3 User-Centered Design

While creating this program, I have done my best to apply principles of user-centered
design. User-centered design is defined as “a philosophy based on the needs and interests of
the user, with an emphasis on making products usable and understandable.” [4] Although
user-centered design can be applied to the design of any object that a user might interact with,
it is particularly applicable for computer programs. Program that follows user-centered design
principles are generally considered to be intuitive and easy to use. '

o Savage Worlds, certain game tenms such as Edges, Hindrances, and Traits are capitalized. I have chosen
to use the same capitalizations and other formatting when referring to these terms.

An important part of applying these principies involved showing prototypes of the pro-
gram’s user interface to potential users and asking for them to provide feedback about what
aspects of the user interface made sense to them and what aspects could be improved. This

process is further described in section 3.2.

1.4 Programming Language

I decided to create my program in the Java programming language because it is the pro-
gramming language I am most familiar with. I briefly considered writing the program in C++-
or ObjectiveC, but these are two programming languages that I'am not as familiar with and
I felt that learning a new language (in.addition to everything clse) would have resulted in
me producing a less developed program. Java also has the benefit of being cross-platform; a
program written once in Java can be run on Mac OS X, Windows, Linux, or other operating
systems without any modifications to the code. Fuarthermore, Java includes the Swing package,
a powerful, platform-independent framework for creating a Graphical User Interface (GUI),
which enabled me to easily create a user interface that followed user-centered design principles.

1.5 Database Framework

Farly on I decided that I wanted to use a database to manage the various character options.
Doing so would allow for more flexibility—no code would need to be modified when new
character options were added to the database—and would provide me an opportunity to learn
the skills needed to use databases in future programs that I might write.

After making this decision, I had to choose which database framework to use and examined
several free versions. Some, like PostgreSQL (pn. posi-gres-que-el), are very powerful, but are
intended to be used on servers so that multiple computers can access the database. Because
I only needed a program to access a database on the same computer, these sorts of databases
were unsuitable for my purposes. The Java programming language includes the Java Database
Connectivity (JDBC) framework, but it is only usable in Java. I was hoping to use a framework
that would be available not only for Java, but also for programming languages that I might be
using in the future.

I ultimately decided to use SQLite (pn. see-quel-ite), a free database framework that is in
the public domain. This framework is cross-platform and does not require a server. Instead, a
program using SQLite directly accesses the database file on the same computer. Furthermore,
SQLite advertises itself as “the most widely deployed SQL database engine in the world,” being
used by a number of notable companies including Adobe, Apple, Mozilla, Nokia, and Oracle(1].
I decided that since it was so widely used, it would be advantageous for me to become familiar
with working with SQLite.

SQLite databases are not accessible in the standard Java language, so I needed to use a
“wrapper” to translate Java instructions into the native C programming language instructions
that SQLite uses. I decided to use “sglitedjava,” created by Almworks and released under the
Apache License 2.0, and used it extensively throughout the program,.

Chapter 2

Program Overview

2.1 Load Database Window

avesomeProject.zip
Comp 253 QId Prajects
Comp 265 Old Projects
Beadlands High Noon
OpanDB €., cter Buifder
1 Savage Wouter Creator 0 - C e
£3 Savage Wo...or Architves » 2 Name SavagrWarldsCCoat
Savate Wo,..ator Temp n.swdd
il -
Sire TLHE
i SGlite Proot of Loncept »: ;ﬁi"ﬁi ﬁi;?ﬁgﬁs:m ™
SWOCTest.estBUMOGAT |y cpmned 12/3/2013 £:01 784
SWCCTestjar o

soran e

Userlictionary. i

Figure 2.1: Screenshot of the file chooser for loading the database fle

When the program is first launched, a message appears informing the user that they will
need to load a database file of character options, which has the extension “swdb” (standing
for Savage Worlds DataBase). After the user clicks the “OK” button, a file chooser appears
in which the user can select the location of the database. The file chooser matches the de-
fault appearance of file choosers on the operating system that the program is running on {in
RFigure 2.1, it matches the standard appearance on Mac 08 X).

If the user selects an invalid file (i.e. one that is not a Savage Worlds character creator

K.

database) or does not select a file at all, a message appears informing the user of their mistake
and they are brought back to the file chooser. When the user selects a valid database file, the
user is brought to the main window.

2.2 Main Window

Aurlimms_ Agtiiey 46, ?m.xri»: da, ?puu b, Slu‘nblll dr: Vr or di

Shills: Climbing g4, E-wlnhw 6, Tovestigaion 410, Pemmq!sra A4, Srealth dis
Chardsi: & Faeet & Pareyz 55 Tooghhess: 52

lisdraness:

s

ear; 3500

Windeanee - o ol Ty .y e
= Thumbs [FHepain Holf of e
Wi ~2 1o Fatigut tests : it Jolks pather tog much inteligence. This chwaerer
Wajor rust homifiste oppon... penwnifies over-cautivasness, He never makes zadly dovisions
Kinor/Hafor -2 1o atack or nothce.. 2ind Hkes 1o plol things out I detail fong helope sy action §
Hajor G less Beiny pes <., ahen.
kinor . Unabie o keep a sec., :
8 to all actions thatr.

cautious o)

iCiueless -7 W oSt Comnen. .. Chosen Hindrantes
+iCoda of Henot Character kaeps his.. i L

Lurlons i Character wanls 1o k ..

tero wants 1o die af.,

Minorjhisjor Character suffars fo,., ¢
Minor Charatwer doess’t bel...
ajor Pate 1, ~F {0 Strang... o
MinorfMajor Character has a veeur,,,
MinorfMajor T Characied s obsesse..
MinarfMajor Charsma «1; Fatigue..,
Sl Rk, oo KMntioa cman

Mae

Figure 2.2: Screenshot of the main window

The main window (Figure 2.2) is where the user will spend the mdjority of their thme. The
top third: of the screen contains a group of elements collectively referred to as the “summary
area” because they provide a summary of the current state of the character being created. The
bottom two thirds contain a tabbed pane! which contains several different tabs, each of which
handle a different aspect of character creation. The user can access the tabs in any order.

2.3 Summary Area

The left part of the summary area contains four labels: “Name,” “Concept,” “Rank,” and
“Setting.”

(b2

Allrilintest Agility d6, Smarts a0, Spicey 6, Siespth 80, Vigor do
KEAls: Cimbing i, Fighting dil, Invedigation ¢16, Persansion dB, Stealth 46
ACharisma: & Pacer &7 Parey: 50 Toughmoss: 5 i
Hindranees:

Falpes:

Pigure 2,3: Screenshot of the summary area

o Name: This label is for a text field in which the user can provide a name for the
character.

o Concept: This label is for a text field for the character’s “concept,” which is a description
of what sort of character they are, such as “Mad Scientist,” “Professor of Archaeoclogy,”
or “Space Marine.”

s Rank: This label is for the character’s Rank and Experience Points, which in Savage
Worlds is an indication of how much experience they have. This is currently initial-
ized to Novice at 0 XP, allowing the creation of a hasic character. Because creating
an experienced character is noi yet supported by the program, this option cannot be
changed.

s Setting: This label is for the setting that the character is built in. Because the char-
acter creator does not yet support creating characters from supplemental settings (see
Section 1.2.2), it is initialized to “Default” and cannot he changed.

The center part of the summary area contains a text description of the character in the
conventional format that Savage Worlds characters are written, especially when they appear
in published books. This section automatically updates to reflect the modifications that the
user is making to the character as it is heing made.

In the right part of the summary area, the user can select a portrait for the character.
By default there is an image showing the outline of a nondescript person. Below that is a
button labelled “Browse...” When clicked, a file chooser appears that allows the user to select
an image file for the character’s portrait. If an invalid image is selected, a message appears
informing the user of the error. When a valid image is selected, the image of the nondescript
person is replaced by the image that user selected.

2.4 Race Tab

Step 1 of the character creation process is to choose “any race available in your particular
setting,” the default of which is Human.{3] Some settings, allow for additional races such as
Eives, Dwarves, Androids, Atlanteans, or other non-human characters. The left section of the
the tab (see Figure 2.4) allows the user to select any of the races that are listed in Savage
Worlds Deluze and it is currently up to the user to ensure that they are compatible with the

]

Hyman

tumans are she mandard race in Savage Workds, md siser
phay with une free Hedpe Giee Step M,

Figure 2.4: Screenshot of the Race tab

setting that they are making the character for. Below that is a button to select the race and
a label informing the user which race is currently selected. The right section of the tab shows
a full description of the selected race and the benefits a character would get by selecting it.

2.5 Traits Tab

Figure 2.5: Screenshot of the Traits tab

Next is Step 2, which is purchasing “Traits.” Traits collectively represent a character’s

hasic attributes, such as Agility, Smarts, and Strength, as well as skills, which are trained
aptitudes such as Shooting, Stealth, and Persuasion. Because each skill is linked to a particular
attribute, the program’s interface physically groups skills below the attribute they are linked
to (see Figure 2.5). Traits are represented by polyhedral dice, ranging in even numbers from
a d4 (4-sided die) to a d12, with higher-sided dice representing greater ability. Bach Trait in
the tab has a spinner next to it that only allows a user to select valid die types (i.e. the user
cannot select values for which a polyhedral die doesn’t exist, like a d7}. Modifying a Trait via
one of the spinners is instantly updated in either the “Attributes” or the “Skills” sections of
the summary area above the tabbed panels.

2.6 Hindrances Tab

HCuriony (Major)

One less Benny par $... A1 kiled the car, and il wigi ki your here as well, Coriows
Unable to kesp & s haraeters are casily dragged inlo any adveotare, They have
-6 o afl actions that .. ‘o check ou everyibing amd alsways want o know wlsat's
Hever ke prisoriers cebingd i petential miystery.

Character & overly £4..
~2 10 MBSt Comma...
Charzcter keeps his,

Minor !

Minotfhzor Character suffers fio.., -
Doubring Thomas Minot Character dogsn't bel...
Eiderly tdzfor Pace 1, «1 1o Streng...
Ebetry MinorfMajor Character s a recor...
Gready Mitnerfajor Character is ebsesse...
Habit Minet/Major Chatistna «1; Fatigue...
Hard of Mearing Minor/Major ~2 10 Mbtice soumds)...
Heroic Major Character shways hel...
llliterzte Minor Hero is unabde to cea...

me gy MBI s tptonsessgsnen b SALRADD LLRION,

inar
Curlous Idajor

Figure 2.6: Screenshot of the Hindrances tab

Step 3, which is to choose a character’s Hindrances (flaws) and Edges {talents) is broken
into one tab for each. The left side of the Hindrances tab (see Figure 2.6) lists all of the
Hindrances in Savage World Deluze, whether it is classified as a minor or major Hindrance,
and a brief summary of its effects. Below that is a a search filter and a button for choosing the
selected Hindrance for the character. Any Hindrances that are chosen or removed are instantly
shown in the “Hindrances” section of the summary area. However, choosing a Hindrance that
modifies a character’s Traits or derived attributes—such as the Lame Hindrance that reduces
a character’s pace by 1—does not currently modify those in the summary.

The right side of the tab has a field which displays a full description of the Hindrance that
is selected from the list on the left. Below that is an area where Hindrances that are chosen
are listed and can be removed.

2.7 Edges Tab

- Regulremer
N, K48
W, A &, St dé +2 1o nimbieagss-ba.. Reguircments: Novies
W, AR ihirades), Faith,,. St urarmy NGl el gels by your bera, Ho's very observart and
pereeprive, and sdds 42 10 his Notice roils 1o hear, e, or
N, AdE fgoove -2 peaalty for.., | atherwise saose the world wronnd bin.
N, Special Allows acCess 10 SUph., -
N, $p a8 Arnor 2 v, mRagit,
N, Arcang Res. AA0r 4 e, magle, 4
M, A d8+, Clrabing d... +2 to damage wheat...
N,V dE Chafsme +& ’
¥, Avractive Claarisina +4 : : . e
N Character may spead... . : L TSIEAENEE
N, Sp d8 You gain an admatc...
N See text
S, Fightirng 48 Party + &
V., Block Parry +2
N, Sp dG +2 ‘o Feartists
N, Stdé +2 w0 unarmed dam...
5, frawdar Bonus dia to wnarme..
TR L SR O rdopdt

Figure 2.7: Screenshot of the Fdges tab

The Edges tab (see Figure 2.7) continues Step 3 of the character creation process. The left
side of this tab shows a list of Bdges much like the one in the Hindrances tab and also has
below it a search filter and a button for choosing the selected Edge for a character. Fdges that
are chosen for a character are instantly shown in the “Edges” section of the summary area,
but do not currently modify any other part of the character. For instance, the Alertness Idge
provides a +2 bonus to the Notice skill, but there is currently no change in the “Skills” secticn
1o reflect this. .

On the right side of the FEdges tab is a large area that displays a full description of the
Edge that is selected in the list on the left. Below that is an area that displays which Edges
the character has taken and includes a button which allows a chosen Edge to he removed.

Each Edge has prercquisite requirements that must be met before it can be purchased.
This program does not yet check to make sure that only characters who meet the prerequisites
can take the Edge.

2.8 Gear Tab

Step 4 is to purchase the character’s starting gear. New characters have $500 with which
to purchase their gear, but some supplemental settings allow a character to start off with more
or less money. This program assumes that the default amount of $500 is being used.

The left side of the tab (see Figure 2.8) includes a list of the different types of gear that can
be purchased, such as “Hand Weapons,” “Armor,” and “Mundane Items.” When one of these
is selected, the table in the upper-right section of the tab updates to list gear of the selected
type.

iiand Weapans
A armar

a3
Bigek: Camera (dispessble}
SAmmaniton arfEra (requign -
- amera ldigital)
andle tprovides Hipht In 2" t...
antesn {waterskir
1 Cailidar Phont
ilrowbar
i Fashlighs 1107 beamn)

oear i s ROEHULY
JSunvivat knife
tRope (10%
;lTorth 11 hour, 4° radius
;Camara fregulary
zaBackpagk
g

Figure 2.8: Screenshot of the Gear tal

Below this table is a spinner for specifying the quantity that the user would like to purchase
along with two buitons, which are grayed out unless an item is selected. The “Buy” button
adds a number of pieces of the selected gear equal to the number in the quantity spinner. The
total cost of the transaction is then subtracted from the character’s total money or an error
message is shown if there is not enough money for the purchase. The “Add” button simply
adds the selected gear to the character without medifying the character’s money. This might
be useful if the GM of a game declares that all players can create a character who starts with
certain equipment for free.

A second table lists the gear that has been purchased for the character. Items bought or
added using one of the aforementioned buttons are instantly displayed in both this table and
the summary area at the top of the window. A quantity spinner and two buttons are below
this table which allow the user to “Sell” or “Remove” a piece of selected gear in the quantity
specified by the spinner. Tinally, the bottom left of the tab includes a label displaying how
much money the character has.

2.9 Background Tab

This section is for Step 5 of the character creation process: “Finish your character by filling
in any history or background you care to.” [3] Because this is a fairly open-ended step, this tab
only includes one large text arca that the user can use to type whatever particular background
details that they wish to add (see Figure 2.9).

10

hMontana Mika Is an archacologist who strongly believes that artifacis
showld be I maiseums,

Figure 2.9: Screenshot of the Background tab

2.10 File Menu

Figure 2.10: Screenshot of the File menu

It is commeon practice for programs to contain a menu labelled “File” which contains menu
items for the following actions: “New,” “Open,” “Close,” “Save,” and “Save As...” This
program also includes this menu (see Figure 2.10) to provide the standard functions that
users expect. Bach menu item is accessible using the conventional keyboard shortcuts for the
operating system that the program is being run on (for instance, the keyboard shortcut for
“New” on Mac OS X is Command-N and on Windows is Control-N}. Loading and saving
characters has not yet been implemented, so these menu items are grayed out to visually show
the user that these actions are not available.

When the program is running on Windows, an additional menu item named “Exit” is listed,
as it is conventional to include such a menu item in the File menu of Windows programs. This
does not appear on other operating systems where it is not conventional, thus users are given
an experience that is consistent with what they would expect to see.

11

2.11 Edit Menu

~Undo Buy Cross‘fa_i;w--;--.aﬁﬁzg i

Figure 2.11: Screenshot of the Edit menu

This program also includes an “Edit menu {see Figure 2.11) which contains the menu
items “Undo {action]” and “Redo [action]” where [action] is the name of the action that can
be undone or redone. If either function is not available because there is no action to be either,
undone or redone, the corresponding menu item is grayed out to inform the user that it is not
possible to do it at this time. Kach menu item is accessible using the conventional keyboard
shortcuts for the action on the operating system that the program is being run on (for instance,
the keyboard shortcut for “Edit” on Mac OS X is Command-Z and on Windows is Control-7).

12

Chapter 3

User-Centered Design

User-centered design is an important concept for making computer programs easy to use.
Specifically, the creator of a program should “make sure that (1) the user can figure out what
t0 do, and {2) the user can tell what is going on.” [4] A program that does not meet these two
requirements is often considered to be difficult to use and unintuitive.

3.1 Focus on Explorable Systems

The Design of Everyday Things states that one of the major ways that computers, and by
extension the programs that run on them, can be made easier to use is to invite exploration
from the user. Norman names three requirements that a computer must meet in order for it -

to he considered explorable:

1. In each state of the system, the user must readily see and be able to do the
allowable actions. ‘ ‘
2. The effect of each action must be both visible and easy to interpret.

3. Actions should be without cost. When an action has an undesirable result, it
must be readily reversible...In the case of an irroversible action, the system
should make clear what effect the contemplated action will have prior to its
execution; there should be enough time to cancel the plan. [4]

During my initial planning, I attempted to make sure each action was readily visible by
drawing rough sketches of the user interface {(see Figure 3.1}, making sure that there were
visible means of accessing cach function. Whenever possible, I used conventional user interface
elements, such as buttons, text fields, and menu items, which would behave in the manner that
the user would expect. If it was not possible to perform an action at a certain time, I either
grayed out the element or, in the case of text fields, made them unable to be edited.

In order to meet the second requirement, I gave all user interface elements a label that de-
scribed their function. The third requirement was met by creating undo and redo functionality,
which is described in Section 4.6.

13

e, it

{\«_».-. i \jﬂ{{{w - { éf? (:;M::W«M;;&wm«.,mwm . e b o o . it e -

; N
. et e . m;f“{«wf(;?@;@,w@wffﬁg

Figure 3.1: An initial sketch of the user interface. This one shows how I intended to lay out the
list portion of the Hindrance tab.

However, Norman asserts that designers are not typical users and that “designers often
become expert with the device they are designing. Users are often expert at the task they
are trying to perform with the device.” [4} Even though the program seemed easy for me to
~use (since I designed it), ultimately it needed to be intuitive to someone who wanted to use
the program but did not have any initial familiarity with program. itself. Therefore, it was
necessary to gather feedback from potential users and determine if they too found that the
program was explorable and therefore intuitive.

3.2 Paper Prototyping

Paper prototyping is a means of testing for user-interface design by making a mock-up of the
interface on paper before anything is programmed and then asking for feedback from potential
users. Because the potential interface is either drawn or pasted together, it is very cheap
and easy to create. Professional companies creating software, web applications, and websites
frequently use paper prototyping and are ultimately able to save both time and money by
creating a better program for their users without the need to make major revisions later. [2]

For my project, I created a paper prototype by cutting out smal pieces of paper and
drawing a small sketch of an-element, such as a button or a text field, on each one. I then
attached cach piece to a larger piece of paper, which represented a section of the program
window. I decided to affix each element using a roll of tape so that elements could be easily
removed ' and relocated if necessary to visually show the users what the interface would look
like if elements were arranged differently.

Using this process I created a model for the header part of the window, a model for the
tabs, and one model for each of the tabbed panels, which could be swapped to create the effect
of the user switching between tabs (see Figure 3.2).

14

R

3

Figure 3.2: A picture of the completed paper prototype. The largest piece of paper represents
the panel that appears when the Hindrance tab is selected and can be swapped with similar pieces
of paper representing other panels.

It took me about.and hour and a half to create the entive paper prototype interface. While
making it, I already began to discover elements of my interface that wouldn’t work the way
that | had intended. For instance, I discovered that there was not enough space on a cerfain
panel to fit all of the elements in the arrangement that I had originally planned, so I needed
to make changes to create a model that had a better arrangement.

3.3 GGathering User Feedback

Although the interface seemed logical and intuitive to me, I needed to show it to others
who might use the program to determine if they were also able to find it easy to use. I showed
the paper prototype to three students at Wittenberg University who were familiar with Savage
Worlds and would likely use this sort of program.

When I met with each potential usex, I showed them the paper prototype as if they were
using the program. I asked each user what they thought of the arrangement of elements and
if they had any suggestions to make it more intuitive. I also asked what they would expect to
happen when they interacted with a certain vser interface element, such as pressing a particular
button. If what they thought would happen was different than what I intended to happen, 1
asked what could be changed in order to better convey the intended action. '

Inmy original prototype, there was an additional tab named Concept which allowed a user
to input the character’s name, concept, Rank, and the setfing that they were in. When I

15

showed this to the potential users, they thought that this was rather cumbersome and did not
like the fact that the character’s name and concept could not be seen when other tabs were
selected. So they suggested that I move it to the summary area at the top of the window. After
some thought, 1 decided that this would be a better design and so the computer prototype I
later created included this suggestion.

Much of the feedback I was given was very helpful and enabled me to create an interface
that I discovered was far more intuitive than the one I had initially created. However, some of
the users providéd feedback that was contrary to another user’s feedback or made suggestions
for the user interface that were either technically impossible to implement ok violated typical
convention for computer program interfaces. Ultimately, I considered the feedback that T felt
was most valuable and uscd it to create a revised interface. :

3.4 Computer Protdtype

After receivirg feedback for my paper prototype, 1 decided that it wag not necessary to
create a second paper profotype to gather more feedback and instead began to program the
user interface in Java. I created a program that roughly displayed the user 111telface of the final
product, but did not yet have any functionality. This enabled me to create-a new prototype
of the user interface (which looked exactly like the final product since it was on the computer)
that I could show to potential users (see Figure 3.3).

fanbues: Agility d6, Smars 46, Seidr de, Swength d5, Vigor d6
Skifle; Buating B, Fiphting db, Shovting 06
arisena; {1 Pace; 6; Pairy: 51 Toughness: §

P
Ancrat -2 o Fatigpte le:

At ognl i ot humsitiue op

Figure 3.3: A screenshot of an early version of the user interface, which was shown to users during
the second round of user interface testing.

16

I showed the computer interface to the same three potential users in order io receive
additional feedback. This time, I received feedback that the Gear tab seemed to be very
unintuitive and my testers had ideas for a better layout, many of which I implemented. Besides
that, I received surprisingly few suggestions about the interface and decided that I did not need
to do an additional round of interface testing.

3.5 Final Product

i, Sprength 3, Vigar o
, Pecsuasion 48, Stonllh e

it cantlous (Mlnar}

Hiner -2 1@ Fatique wsls Smne fuiks gathier 1o oy deselilgenee This ehiatacier

Halor Mustinenllinte copo, ersopifies greecaulioniness, e nivet makes nish dacigons |

Binee/bajor ~2 W RACK OF noule) ke s 10 plot hiogzs ant in detadt oy befare any ackun
One Tesi Senny per §.
Unirtl2 10 kep a der
-4 10 31 BElions L.

Clavmeter kaeps his...
Kot Clarscier wats 1w kK,
baksiar Hero wents 10 die aft,
Misgfsajor Charavier suflirs fro
Mgy Charaeier dod s’ Del..
Mijor Pace -1, vl o freng..
Hinor iMajer Lhiraveter bis & e
winorsjor . Uharacter s obserse.
Hhivior fdaler Charignia - 1; Fasigug..

rafAiuapin BT S YIS -

Figure 3.4: A screenshot of the final version of the user interface.

The final version of the user interface (see Figure 3.4) incorporates much of the feedback
that was given during the user interface testing phase and is much more intuitive than my
: initial designs. When I have informally shown nearly-complete versions of the program to
others, I have often received comments that the program looks nice and appears to be simple
to use. These compliments indicate to me that following user-centered design principles in my
programs is an effective way to make it better for the users who will ultimately be using it.

17

Chapter 4

Programming Practices

In addition to creating a program that followed user-centered design principles and was easy
for a user to use, I also wanted to create a program that used good programming practices so
that it would be easy to write and maintain. I therefore used a number of design patterns in
order to effciently implement functions and frameworks to better organize my code.

4.1 Graphical User Interface Layout

To organize the user interface elements in the manner that I had imagined, I needed to use
a Hexible layout manager that would allow me to position elements in an intuitive way. Java
Swing contains several layout managers and out of them, I decided to use GridBagLayout.
This layout manager works by arranging clements into a grid with rows and columans that
resize to the largest clement in each. Elements are allowed to take up more than one grid cell
and may also be positioned in a small portion of the grid cell. Within each cell, elements can
be set to align to a certain position in the cell or to fill all available space (see Figure 4.1).

Hiinot fhajor ¥ ip SACK oF Aotic Cartous (hkgory

Bad Luck Major O less by per &ilted the e and 1 might L3 yosr here s well Quriors
Bl Mttth Miner Unalie w0 keep a se v ackers sre caslly drazged Inte any adventure, They bave
Blirtd Malor ~6 15 &l actions that in eheck oul ewr}rlhing i aiways wink 1 Laow whal's
Bloodtiarsty Major Huver Wkes proners “hehind € potential taysery,

Cauions HitkT Charargr is overly
Llueless Hafor “2 10 'magt Cemmon,
{og:

Daath Wish Minor &70 wants (o e 2

Dejosional Minor/Major. Character suffers fro.,.

Coubgng Thomas Minor Charactgr dazsn't be 3

Eldecly Major Pace -1, -1 10 Sreng... ﬂf""f

Engimy tinartMajor Character has 3 1ecur... et

X Gregdy dinot fHajor Charadier is obsesse... Majar
S Habit hinortajor Charisma ~1: Faugue...

“ iHard of Hearing wdinat fMajor 2 1o Motke sounds:...

FiiHerol Mijor Chararter always hel

= itficerate Rinor Hero If Miabie 10 yea,

L asna., Ty RR—— 2.8 aks anslns,

Figure 4.1: Screenshot of the program, with gridlines overlaid on it te show how GridBagLayout
is being used.

18

4.2 Accessing the Database

AH character options are stored in a SQLite database file, which I have given the arbitrary
file extension .swdb (an acronym for Sevage Worlds DataBase). Within this file is a database
for each type of character option. Hindrances, idges, Attributes, Skilis, and all related data
are included in rows within the appropriate tables.

I order to access the database, a SQL command needs to be sent to the SQLite database.
For instance, to load all of the Skills in Savage Worlds, the the SQL command “SELECT * FROM
"3kills";” is sent. This returns each of the rows in the Skills table, which the program can
then process. The Search Field in tabs such as the Hindrances tab similarly access the database
by sending the SQL command “SELECT Description FROM Hindrances WHERE Hindrance
%’ + [SearchTerm] + ‘%’;” where [SearchTerm]| is the text that is in the search field. This
returns all Hindrances whose name confains the text in the search fleld, even if it is not a
complete match. Powerful commands such as these drive much of the program’s functionality.

In order to interact with the program, a SQL command needs to be embedded into a line
of Java code. This program then use of the “sqlitedjava” wrapper to convert the instruction in
the Java programming language to an instruction in SQLite’s native C programming language.

4.3 Model-View-Controller Architecture

The model-view-controiler architecture is a way of organizing classes and other sections of
code based on their function. Models contain data, but not information about how it is going
to be displayed or how the nser will interact with it. Views are capable of displaying a model
without knowing ahead of time what particular data values are being displayed. Controllers
handle interactions between the user and the model without being told how they will be stored
or displayed. [5]

In this program, the character that the aser is making is a “model” that is accessed by a
view which displays it on the screen and is modified by a controller that allows a user to make
changes via mouse clicks and keyhoard commands. The main benefit of this organization is
that data models can be viewed or controlled in different ways with minimal changes to the
code. This separation makes it casy to, for instance, add an additional view of the character
that allows it to be displayed as a PDF file rather than as a window on the screen.

4.4 Inheritance

A feature of ohject-oriented programming languages like Java are that they allow for “in-
heritance” which “greatly increases the reusability of classes and also minimizes the duplication
of code.” [5] This works by having one class include all of the properties of another class.

One way that the program makes use of inheritance is with a character’s gear. Gear is a
broad category that covers mundane items, ranged weapons, hand weapons, and armor. Bach
of these have comamon pieces of information, such as cost and weight, but some also have
unique information such as damage and armor protection.

19

1 began by creating a class simply named “Gear” containing information and methods that
were common to all pieces of gear. The methods in the class were as follows:

FET

* A model for a plece of gear that a character may have
* Qanthor Will

* '

*/

public class Gear implements Cloneabled{

YET

* Constructs a piece of gear,

* @param name the name of the gear

* @param cost the cost of the gear im dollars
* @param weight the weight of the gear

* @param notes additional notes about the gear
*/

public Gear(String name, Money cost, double weight, String notes)

FETS
Returns the name of the gear
@return the name of the gear
x/

.public String getName()

FESS
* Returns the individual cost of the gear
* @return the individual cost of the gear
*/

public Money getIndividualCoest()

FEL]
* Returns the total cost of the gear based on quantity
* @return the total cost of the gear based on quantity
*/ .

public Money getTotalCost{)

VLTS
* Returns the weight of the gear
* @return the weight of the gearx
*/ :

public double getWeight()

20

J ok

Returns the notes about the gear
* @return the notes about the gear
*/

public String get¥otes{)

FE2"
Returns the gquantity of the gear
* @return the quantity of the gear
*/

public int getQuantity()

FET:
Sets the quantity of the gear teo the specified vaue
* @param quantity the new quantity of the gear
#/

public void setQuantity(int quantity)

@lverride
public String toString(){

@Cverride
public Gear clone()

This class is sufficient for storing mundane gear such as flashlights or trail rations, but does
not have enough information to store, for instance, a sword because there is no way to store -
a “damage” amount. Thus it became necessary to create a HandWeapon class. But all of
the methods-contained in the Gear class are also required in the HandWeapon class. Rather
than duplicating code, T subclassed HandWeapon so that it was a more specific form of Gear
and could use all of the methods contained in the Gear class. The HandWeapon class hag the
following methods:

FEE:
* A model representing a hand weapon
* Qauthor Will
F'3
*/ .
public class HandWezpon extends Gear{
FETS
* Constructs a hand weapon.
* @param name the name of the weapon
* @param damage the amount of damage the weapon does (e.g. Str+d6)
* @param weight the weight of the weapon
* @param cost the cost of the weapoén

21

* @param notes any additional notes about the weapon
*/
public HandWeapon(String name, String damage, double weight,
Money cost, String notes) {
super (name, cost, weight, notes);
this.damage = damage;

VELS

* Returns the damage of the weapon
* @return the damage of the weapon
*/

public String getDamage()

@0verride
public String toString()

Because of inheritance, the HandWeapon class contains everything in the Gear class shown
above. This prevents code duplication which in turn makes the program simpler and easier to

maintain.

4.5 QObserver Pattern

One common problem when creating a graphical program is how to determine when a
“button or other interface clement has been activated so that other parts of the program can
execube their code. An excellent solution to this problem is the observer pattern. In this design
pattern, a button or similar element is called a “publisher” and the parts of the program
that need to be informed of when the element has been activated are called “subscribers.”
“Publishers maintain a list of subscribers and, whenever there is something to publish, they
notify all their subseribers.[5]” So a button is given a list of the elements that need to know
when it is pressed and, when that occurs, it sends a signal to all of those elements letting it
know that it is been activated. In Java, a subscriber to a button or other user interface clement
ig called an “Actionlistener.”

I also used the observer pattern for informing different parts of the program when the
character had been updated. The internal model containing the data for the character functions
as a publisher. Whenever it is changed, it informs the character summary area at the top of the
window, which is a subscriber, that the character state has been changed. Thus the character
sumnary area knows that it needs to update its display of the character at the moment that
the character has been changed. ' ‘

22

TR

4.6 Undo/Redo Functionality

An important tenet of user-centered design is that “Actions should be without cost. When
an action has an undesirable result, it must be readily reversible.” [4] Many programs include
an Undo menu, which reverts to the state before the undesirable action, as well as a Redo
menu item, which returns to the state before the reversion. I decided that I wanted to include
these in my program.

Dale Skrien’s Object-Oriented Design Using Java suggests the “command pattern” for im-
plementing undo/redo functionality[5]. In this implementation, when the state of the program
is modified, an Object containing the encapsulated {i.e. self-contained) instruction is gener-
ated. This instruction includes both the code to perform the intended action as well as the
code to reverse it. The interface looks like this:

public interface ReversibleAction {

JET:
* The code that executes the actiocn
%/

public veid action();

/K
* The code that undoes the action that was previously done
*/

public void reverselction()

JET?

* Allows the action to be identified (e.g. Buy Gear), which can then
* be used in the menu items (e.g. Undo Buy Gear).

*/

public String toString();

The following is an example of an encapsulated instroction using the interface above that
I created to add a Hindrance: '

private class AddHindranceAction implements ReversibleActiond

//The Hindrance being added
private Hindrance hindrance;
//The panel that will display that the hindrance is added

private HindrancePanel panel;
//The internal model keeping track of taken hindrances
private HindranceTracker tracker; '

public AddHindranceAction(HindrancePanel panel,

23

HindranceTracker tracker, Hindrance hindrance){
this.panel = panel;
this.tracker = tracker;
this.hindrance = hindrance;

@0verride

public void action() {
this,.tracker.addHindrance (this.hindrance);
this.panel.addHindrance{this.hindrance);
this.tracker.notifyObservers(); //Used for the (bserver pattern
DebugMode.print("Added the " + this.hindrance + " Hindrance.');

b

©0verride
public void reversedction() {
thig.tracker.removeHindrance (this.hindrance);
this.panel.removeHindrance (this.hindrance};
this.tracker.notifyDbservers(); //Used for the Observer pattern
DebugMode . print ("Undid addition of the " +
this.hindrance + " Hindrance.");

@Override
public Btring toString(){
return "Add " + this.hindrance + * Hindrance";
T
1

This encapsulated instruction is placed onto a stack data structure, henceforth referred to
as the “undo stack.” If a modification was made to a character, then instead of storing the
entire state of the character before and after the change, only the code that performed the
change, encapsulated into its own class, is pushed onto the stack. As more changes are made,
additional encapsulated pieces of code are pushed onto a stack.

If the user invokes the Undo command, the instruction on the top of the undo stack is
popped, the command is undone (using the encapsulated code’s reverse() method) and then
is pushed onto another stack, referred to as the “redo stack.” If the user invokes the Redo
command, the instruction at the top of the redo stack is popped, the original action is executed
(using the encapsulated code’s action() method) and then is pushed onto the undo stack, If any
additional instructions are executed without using either command, the instruction is pushed
onto the undo stack and the redo stack is cleared.

The Command Pattern is relatively space efficient and easy to program and therefore it
was the way I decided to implement undo and redo functionality in my program.

24

Chapter 5
Conclusion

This project has been both an application of what 1 have learned while at Wittenberg
University as well as a learning opportunity to further my kaowledge of concents in Computer
Science. Computer Science 250 was helpful for teaching me the Java programming langnage
and how to use data structures. [made extensive use of design patterns and object-oriented
programming that I learned in Computer Science 353 (formerly 253). And the background
in different programming languages that I learned in Computer Science 260 made it easier to
learn how to use SQLite.

However, this project would not have heen possible without looking beyond the classroom
to learn. I did my own research about user-centered design and using a database, both of
which were used extensively in the project. I also realized that there were some things I could
not learn from books and gathered extensive feedback from potential users to make a program
that was not only usable, but also enjoyable,

5.1 Future Work

Although T have created a fine program for this project, I still feel that it can be improved
and would like to continue working on it. Some features of Sevage Worlds are still unimple-
mented, such as “Arcane Backgrounds” (characters with magical or otherwise superhuman
powers}. With more time, I hope to be able to implement missing features such as those and
allow the creation of any character that can be made with the core book.

I also hope to make the program extensible, enabling users to add character options from
supplemental books to the program and be able to make characters who can use them. Tor
instance, Pinnacle Entertainment Group has a line of books for the Deadlunds setting, a West-
ern with some supernatural elements. Additional Edges, Hindrances, and Gear are available
to help players create characters that are better suited for that setting. Ideally I would like
for my program to be extensible enough that the majority of the published supplements from
both Pinnacle and third-party publishers will be able to be added to this program.

Finally, T hope to present my finished program to Pinnacle Entertainment Group and ask
for their feedback and permission to distribute it for others to use. It would be a great honor
to have the company who created Savage Worlds to give their blessing for me to share this

program that helps players create characters for their game.

5.2 Final Thought.s

I have spent many, many hours working hard on this project and I am very proud to present
this program that I have created. Several people who play Savage Worlds have already asked
me when they might be able to use this program and I hope that, with some improvements, it
will be very soon. I am very thankful that Wittenberg has given me the opportunity to further
my studies in Computer Science by creating a program for a game I love and I hope that what
1 have learned from this project will help me in all of my future endeavors. "

26

References

[1] SQLite homepage. http://sqlite.org. [Online; accessed 25-November-2011].

[2] What is paper prototypizg [examples]. http://paperprototyping.com/what_examples.
heml. [Online; accessed 5-December-2011].

[3] Shane Lacy Hensley et al. Savage Worlds Deluze Fdition. Pinnacle Entertainment Group,
2011.

[4] Donald A. Norman., The Design of Everyday Things. Basic Books, 2002.

[5] Dale Skrien. Qbject-Oriented Design Using Jave. McGraw-Hill Science/Engineering/Math,
2008.

27

