Automated Identification of Chord
Progression in Classical Music

Peigian Li

Computer Science

Wittenberg University

A thesis submitted for the degree of
B.S., Computer Science

May 2014

This thesis entitled:
Automated Identification of Chord Progression in Classical Music
written by Peigian Li
has been approved for the Department of Computer Science

//%/71 / /V /é/m/

T, Brlan éélﬁ.elbume

/%Mwm

Dr. Charles Grogan

4182003

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above
mentioned discipline.

Abstract

This paper examines a supervised machine-learning algorithm for automatic chord
sequence recognition from synthesized audio of Classical music phrases. A hidden
Markov model-based system achieves 67.7% accuracy on an independent sct of
fifty sclections. The system is trained on seventy-five phrases from compositions
by Bach, Mozart, and Beethoven, that have been hand-labeled through symbolic
analysis of the phrases in MIDI format.

Chapter 1

Introduction

Chord progression - the succession of chords over time - defines the harmonic structure in
a musical composition. Once the chord progression of a particular musical piece is determined,
this mid-level information about harmonic content can be used for higher-level analysis on the
underlying musical signal. Harmonic analysis with detailed information on chord boundaries
Is very important for applcations such as music search, segmentation, and similarity identi-
fication. For such reasons, many higher-level analyses of a musical composition usually start
with labeling all chords of the piece.

Labeling chords by hand from music recordings can be tedious, error-prone, and time-
consuming when this has to be done for a large number of compositions. Hence, automatic
chord recognition systems are very nseful for those who need harmonic information on a piece
of music.

1.1 Chord

A chord in music is a harmonic set of at least three notes intended to be heard as if sounding
simultaneously. The set of notes forming a chord are not necessarily played at the same time.
Chords can be broken into groups of notes, or even individual notes played in sequence, one
after another, as in arpeggios.

Chords consisting of three different notes are called triads. The three notes are the root
{or first), the third, and the fifth, so called because the third note forms a third interval
with the root note, and the fifth likewise. An interval can have one of the following qualities:
perfect, major, minor, augmented, and diminished. Depending on the quality of the intervals
formed by the third and Afth with the root note of a triad, the triad can be described as
major, minor, augmented, or diminished. For example, a major triad is built by a major third
and a perfect fifth above the root note; a diminished triad is formed by a minor third and a
diminished fifth above the root note.

If another note is added to a triad to form a chord consisting of four notes, that extra note
is usnally the seventh above the root, thereby called the seventh. Such chords are named
seventh chords. The quality of the seventh interval between the seventh and the root,
together with the quality of the triad formed by the other three notes, determines the quality

of a seventh chord. For instance, a half-diminished seventh chord consists of a diminished triad
and a minor seventh note above the root; a dominant seventh chord (or major-minor seventh
chord) is made up of a major triad with a minor seventh note.

The following eight cominon chord qualities are considered in this paper:

Quality [Third] Fifth | Seventh Example
major triad (M) major | perfect N/A C-E-G
minor triad {m) minor | perfect N/A C-Eb-G
augmented triad (aug) major | augmented | N/A C-E-Gi
diminished triad (dim) minor | diminished | N/A B-D-F
diminished seventh (dim7) minor | diminished | diminished | B-D-F-Ab
half-diminished seventh (hdim?7) | minor | diminished | minor B-D-F-A
minor seventh (m?7) minor | perfect minor D-F-A-C
dominant seventh (dom7) major | perfect minor G-B-D-F

Furthermore, a chord’s inversion refers to the relationship of its lowest note (bass) to the
other notes in the chord. When the bass is not the root of a chord, the chord is described as
inverted. We ignore chord inversions for our purposes, although chords in different inverted
positions may play different harmonic roles in a composition.

1.2 Background and Related Work

Researchers in music information retrieval have shown that statistical machine learning
methods work reasonably well for chord recognition. Some researchers focus on chord recog-
nition from musical scores. For example, Perera and Kodithuwakku use an artificial neural
network following the multiple adaptive linear neuron (MADALINE) network model to de-
velop a system that works with music in Musical Instrument Digital Interface (MIDI) format
[10]. Hidden Markov Models (HMMs} are very popular among studies of chord recognition
from audio recordings. For example, Sheh and Ellis use an HMM trained by the expectation
maximization algorithm to develop a statistical machine learning method for chord segmen-
tation and recognition from audio recordings [4]. They use chord sequences as the sole input
to their models and treat the chord labels as hidden values in an HMM. Their model includes
147 chord types, but their training data contain only 20 songs. The insuflicient training may
explain their 22% accuracy for chord recognition.

Bello and Pickens use a similar method, but they also incorporate some musical knowledge
into their model initialization [1]. They build the key distance, according to the circle of fifths,
into their state transition matrix. They consider 24 major and minor friads only, and achieve
75% accuracy. One of the many challenges commonly recognized in these studies is the lack of
training data: music with labeled chord boundaries. In many later studies, researchers use the
same training data set consisting of the twelve Beatles studio albums with chord transcriptions
by Chris Harte [12]. HMM-based systems have been shown to perform reasonably well on these
Beatles albums, with more than 70% accuracy of chord recognition achieved by a number of
researchers, though many systems considered a limited nurmber of chord qualities, such as only

major and minor triads.
Probably due in large part to the lack of availability of chord label databases for classical

musie, there has been little research on the application of statistical learning methods on chord
recognition in classical music, i.e. music from the common practice period. To this end, we
use methods similar to previous studies to explore the performance of an HMM-based chord
recognition system on classical music compositions.

Chapter 2

Overview

Most HMM-based chord recognition systems proceed in a similar fagshion. A given music
recording is converted into a series of features that represent the audio spectrum. Then, a
trained HMM is used to perform chord pattern matching, i.e. mapping the chroma features to
chord labels that correspond to the various chords under consideration.

Figure 2.1 shows an overview of our system.

Symbolic music in MIDI

synthesis

Synthesized wave audio

Chroma analysis Chord analysis
Chord labels

Chroma features name: CM dm7 GM ..,

time: 0 2.6 3.2 ..

Training

HMM

Figure 2.1: Overview of the chord recognition system

2.1 Music Selections and Synthesis

Since recordings of real performances inevitably include noise, we work with wave audio
gynthesized from MIDI symbolic data. The artificially synthesized aundio clips can feature the
enharmonic spectrum of musical instruments, making them comparable to recordings in the
real world, but without extraneous noise,

Since many classical compositions are long, it is not feasible to manually label chords in a
large number of pieces. In addition, most pieces contain repeated musical materials, and the
same chord progression likely occurs multiple times. Therefore, we train and test our system
with extracted phrases, instead of entire compositions. Repetition is avoided by strategically
choosing parts of music with different harmonic content,

A total of 125 music selections are used to train and test the system. The training set
contains 25 musical phrases each from J.S. Bach, W.A. Mozart, and L. van Beethoven. The
other 50 selections from music by the same three composers are used to test the performance
of the chord recognition system.

The MIDI files for our selections are obtained from Classical MIDI Counnection [13] and
Classical Piano Midi Page [14]. These symbolic files are synthesized by Timidity++ [15], a
free software synthesizer, into WAVE format. Timidity++ comes with digital instrument data
files, and uses a sample-based synthesis technique to generate enharmonically rich audio as in
real recordings [9].

2.2 Chord Analysis

In order to train a supervised model like an HMM, it is necessary to annotate chord
progression information in each selection. Chord labels include both chord names (root and
quality, e.g. F major) and boundaries (start and end time relative to the beginning of the
selection}.

This is a laborious process, but two factors helped speed up chord-labelling. First, the
Melisma Music Analyzer by Sleator and Temperley! was used to extract various kinds of
information such as phrase structure, meter, harmony, and key. Although the automatically
extracted information is not always accurate, it usually gives correct chord boundaries for a
significant portion of each selection.

Second, some of the selections are used by Kostka and Payne in their text {11] as examples.
For these selections, we only need to align the chords shown in the book in accordance to our
gynthesized recordings.

2.3 Chroma Analysis

Raw audio, synthesized or not, needs to be converted into a more useful and convenient
representation before it can be processed and analyzed by a statistical model like an IIMM.
Chroma features are very powerful in presenting information necessary for chord analysis. All

Thttp://www.link.cs.cmu.edu /music-analysis/

synthesized selections are converted into chroma features before they are presented to the
HMM.
Chroma features are discussed in details in the following chapter.

Chapter 3

Chroma Features

Chroma features, also known as pitch class profiles, are well established in music audio
processing applications [7). The chroma correspond to the set of twelve pitches in the equal-
tempered scale: {C,C4{Db}, D, DE(Eb), ..., B}. Considering music audio as signals, we can
characterize the short-time energy distribution of the underlying signals over the twelve {equal-
tempered) chroma bands, usually by short-time Fourier transforms. Chroma features are often
represented by a twelve-dimensional vector f = (fi, f2, ..., f12)7. A visual representation of
chroma features over time is called a chromagram.

Note that the height of a pitch, telling us which octave the pitch belongs to, is not captured
by the chroma. Chroma features only represent the relative intensity in each of the twelve
semitones (how strong each pitch class is present in the signal}, regardless of their heights, in a
short time window. Since a chord label only depends on chroma, regardless of heights, chroma
features are an ideal representation for harmonic analysis.

3.1 Chroma-Pitch Features

As the first step of chroma feature extraction, the given wave audio is divided into short
segments (frames) of fixed length with overlap. We use a window length of 200 milliseconds
and an overlap of 50%, leading to a frame rate of 10Hz {10 frames per second). A chroma
feature vector is calculated for audio signals within each frame. Therefore, we have 10 feature
vectors per second.

Within each frame window, the audio signal is decomposed into 88 frequency bands with
center frequencies corresponding to the pitches A0 to C8 (MIDI pitches 21 to 108). For each
band, we calculate the short-time mean-square power. The results tell us the local energy of
each pitch band, and indicate how strong a certain note is present at a certain time. Values
that Lelong to the same chroma are then added together; for example, the energy of AQ,
Al, A2, ete. all add up 1o the value for A. The resulting twelve-dimensional vector contains
Chroma-Pitch (CP) features.

10

3.2 Chroma-Log-Pitch Features

Since sound intensity is perceived logarithmically rather than linearly, a logarithmic com-
pression can be applied before adding up the energy levels of individual pitch bands. Feature
vectors obtained this way are referred to as chroma-log-pitch (CLP) features. CLP features
are used in our systern.

3.3 Implementation

We performed CLP feature extraction on our entire data set using the Chroma Toolbox
implemented in MATLAB by Miiller and Ewert [8]. Figure 3.1 shows two spectrograms of
the synthesized waveforms and the chromagram for Bach’s Prelude and Fugue in C Major
{(BWV 846). Spectrograms are diagrams showing spectra. Shades of blue correspond to low
amplitudes; red marks medium amplitues; yellow/green means maximum amplitues. The code
for generating the spectrograms is based on Dan Ellis’s Chroma Feature Analysis and Synthesis
tool! written in MATLAB.

Thttp:/ flabrosa.ee.columbia.edu/matlab/chroma-ansyn/

11

Synthesized Wave

Frequency

Time

Chromagram

Lol

20 £0 60 l 80 60 120 140 16 . 180 20 220

Figure 3.1: Synthesized waveform and chromagram for Baclh’s Prelude and Fugue in C Major
(BWV 846)

12

Chapter 4

Hidden Markov Models

4.1 Markov Models

Before we discuss HMMs, let us first look at Markov Models in the context of chord pro-
gressions. In the following example, let’s consider a chord progression with only three possible
chords: CM, FM, and GM. We now set up a statistical model for predicting the n-th chord, ¢,,
based on the previous chords cp..;, cpg, etc. More formally, we want to find the conditional
probalility

P(Cnlcn_l,cn_g,...>01), (41}

the probability of the unknown n-th chord, ¢, € {CM, FM,GM}, depending on the kaown
chord sequence ¢,-1, ¢n—9, ..., €1 in the past.

For example, if we know the last three chords are {FM,CM, FM} chronolegically, then
the probability that the next chord would be GM is expressed as

Ples=GMicg = FM,c0 = CM,e5 = FM). {4.2)

We can make inferences about this probability from the relative frequency of past observations
of chord sequences.

Without further assumptions of how far in the past the n-th chord depends on, making
inferences about ¢, requires the frequencies for each of the three possible chords, for every
previous time step, for a total of 3%~ observations. Thus to fully consider past frequencies
can guickly become infeasible. In light of this, we make the first-order Markov assumpiion:

P(Cn|Cn-1,Cu~2, ~-~:C1) = P(Cnlcnml) (43)

"First-order” means the probability of a given value for ¢, is assumed to depend only on the
previous observation, ¢,—1. A second-order Markov assumption would require both ¢,—1 and
Cp—2.

Since our system assumes (4.3), our setup is a (first-order] Markov model. A chord sequence
of our model is a (first-order) Markou chain, so-called because the probability of a specific
chord sequence ¢, ¢y, ..., ¢n is found by chaining the joint probability of each observation and

13

the previous one:
n

Pley, g,y en) = [| Pleslein)- (4.4)
=]

With the first-order Markov assumption, the number of required past observations is sig-
nificantly reduced. Instead of an exponentially growing numbers of statistics, we only need
3x 3 = 9 observations to infer the probabilitics of all possible sequences. P(cp|en—1) is the same
regardless of n, thanks to the Markov assumption, and ¢n, tn—1 € CM, FM, GM, therefore the
g combinations.

For example, the probabilities P{c,|en—1) may look like as shown in Figure 4.1. The arrows
point from c¢,_1 to ¢,, and the numbers next to them are the corresponding probabilities
P(eplcn-1). For instance, the diagram shows that P(c, = CM|e,—1 = GM) = 0.5.

0.3

0.4

Figure 4.1: Example of a Markov model state transition graph

The above 9 probabilities are enough for us to infer the probability of all sequences, by
simply multiplying all transition probabilities along the way.

4,2 Hidden Markov Models (HMMs)

Markov Models work well if we make predictions based on a set of states we can observe
directly. In the previous example, we collect statistics of chords in the past, and directly predict
what the next chord might be based on past observations. However, our project is about chord
recognition from {artificially generated) acoustic information, and we do not observe what the
chords are directly. Instead, our observations are acoustic signals, characterized by feafure
vectors (or features, see the next chapter). That is, we want to make inferences about chord
sequences {hidden) based on features (direct observations). This is where Hidden Markov
Models come in.

14

For simplicity, we assume for now that our observations are boolean (either true or false).
Of course, actual feature vectors are much more complicated, capturing acoustic signals (like
what our ears could hear). The boolean assumption helps us focus on the HMM itself, rather
than faithful presentations of complex feature vectors at this point.

More specifically, the chord sequences are hidden. Finding what a certain chord ¢, might
be is based on only the observation at that time, namely feature vector f;. Since f; is assumed
to be one-dimensional boolean, f; is either true or false. That is, in this illustration, we have to
find the probability of the current chord ¢, based on the acoustical observation f;. Assume the
probability of each of the three possible chords associated with a true value of f; is according
to the following table:

C Ji = true
CM 0.8
FM 0.2
GM 0.5
Since P Ple
Plelfi) = w(f}lgcg}i) (o) (4.5)

by Bayes’ rule, for a sequence of n chords {c1, 2, ..., ¢y Hogether with a sequence of n observed
features {f1, fa, ..., fn}, we have

P(e1, 62, o Cal s far oo fu) = P(fl’fz’""f’j,l‘a;:?’z"zjf’}f(cl’%"'*C“), (4.6)

where the probability P(f1, fa, ..., fulc1, €2, ..., cn) can be estimated as [[;L; P(fi|e:), assuming
independence among c-values and f-values.

Since our goal is to predict the chord sequence based on our observed features, we can
safely omit the probability of the features alone, P{f1, fa, ..., fr), because it is independent of
the chords. However, omitting this term makes the result no longer an exact measurement for
the probability, but rather a quantity directly proportional to the probability, which we refer
to as the likelihood L:

P(C1>C21 ---:cnl.flw far fn) X (47)
Lier, e2, s enl f15 fay oy fa) = P(f1, f2, 00 Falers €2,y en) Pler, ez, s n e (4.8)

Applying the first-order Markov assumption to two probability terms, we have

Plci,ea, o calfi, fo, oo fo) & (4.9)

ki3 n

Llc1,¢2, o Cnlfiy f2r o0) = [[Pleslfi)][Pleilesza)- (4.10)

i=1 i=1

15

4.3 Formal Definition of HMMs

Before moving on to discussions of optimal pattern matching in HMMs, we need to specify
terminology about various probabilities involved.
Our HMM involves the following quantities:

o The sel of states S = {31, 89,...,sn, }, where each s; corresponds to one of the possible
chords, and N is the number of states (chords).

o The prior probabilities m; = P(e1 = ;) are the probabilities of the chord s; being the
first chord of a sequence. In our model, we assume all chords are equally likely to be the
first chord of a progression, so we have m; = NLS for all 4.

o The transition probability, ai;, is the probability to move from state ¢ to state j, or
equivalently, the probability chord s; is followed by s; in a certain progression. These
probabilities are put together by the matrix A with entries

agj = Pleng1 = sjlen = 81). (4.11)

s The emission probabilities tell us how likely we will observe a certain feature vector fi

when we are currently at any specific chord (state). In our application, the feature vectors
are discrete (thanks to mapping to twelve semitones, our features are twelve-dimensional
binary vectors; see next chapter}. In speech recognition, the observations are usually
continuous, because the vocal frequency of the speaker can vary continuously over a wide
range.
If K represents the total number of possible feature vectors, then f,, € {vi,va,...,vx}
which is the set of all feature vectors. The emission probability by = P([= vi|en = 51)
is the probability of observing the feature vy, if the current chord is ¢, = s;. Similar to
transition probabilities, the entries b;; form a matrix B.

The above three parameters are referred to as the set of parameters © = {m, A, B} associated
with the HMM.

In summary, our HMM works to match a (hidden) chord (state) sequence C' = {¢1,¢2,...,en}
with the observation sequence F = {f1, fa, ..., fn} of feature vectors.

4.4 Optimal Path

In our chord recognition problem, just like in any other form of pattern recognition, we
want to find an optimal sequence of states {chords) that best match a sequence of observations
{features). Specifically in chord recognition, we need to associate each frame of features to a
certain chord, allowing us to locate the chord boundaries (where the current chord ends and
the next chord starts). This process is referred to as alignment of acoustic features.

The word "optimal” is ambiguous; what is meant by "optimal” depends on the specific
criterion. Here, our criterion for optimality is simaply choosing the path (sequence of chords)
that has the maximum likelihcod according to the HMM. The recursive Viterdi algorithm can
find this optimal path efficiently with a dynamic programming implementation.

The Viterbi algorithm works with two arrays of variables:

16

e 3,(i), the maximum probability of a single path among all possible paths ending in chord
¢; at time n:

6?1(3.) = max P(Ql:fIEa---,Qn—l,qn=Ci1f1>f21---ufn|@) (4'12)
1.2y 00 -1

o ¢,(1), helping us keep track of the "optimal” path ending in chord ¢; at time n:

¢ (7) == argqjL max Pq1,92, o Q10 G = Gio 15 25 000y [0]©9) (4.13)

1§25 a1

4.5 The Viterbi Algorithm

In a nutshell, the Viterbi algorithm always finds the most likely path leading to each
intermediate state (including the terminating state), and ignores all other paths. That is, only
the most likely path leading to each chord ¢; survives at each time n.

The Viterbi Algorithm:

1. Initialization
51 (Z) = 'n*,-b?;,_fl,i = 1, ey]\?’s (414)
$1() =0 (4.15)

where m; is the prior probability of being in state c; at time n = 1.

2. Recursion

6':1(.7) = 1?}% (671—-1(%') : a’ij) ’ bj.fm 2<n<N,1<j<N (4-16)
¢n(3} = &arg 1151}%}1%3(5nw1(i) ' aa‘j); 2<n<N1<jI N, (4'17)

TFo find the most likely path leading to a specific state j, it is enough to consider only
those optimal paths leading to some previous state ¢, and the transition from ¢ to j. The
optimal substructure nature of this problem makes it perfect for an inductive dynamic
programming implementation that runs in polynomial time, instead of & naive recursive
implementation that runs in exponential time.

3. Termination When the last observation is reached, simply consider every state to be
the terminating state, and find the maximum probability among all paths ending at each
candidate,

4.6 Implementation

The system is implemented by using HMM Toolbox for MATLAB written by Kevin Mur-
phy’. The system is a 97-state HMM. One of the 97 states is for when there is no chord present
in a frame window, and the other 96 states correspond to 96 chords. Since the root of a chord
can be any one of the twelve semitones, and we are considering eight chord qualities as listed
in Section 1.1, there are a total of 12 x 8 = 96 chords.

Thitp:/ /www.cs.ubc.ca/ murphyk/Software/HMM /hmm.html

17

Chapter 5

Test Results and Conclusion

5.1 Testing

Test data consist of fifty selections. They went through the same chroma analysis as the
training set did. The resulting chroma features are then fed into the trained HMM system. As
the Viterbi algorithm finds the optimal path using the trained parameters and the input chroma
features, recognition output is generated frame by frame. We then compare the recognized
chords with the hand-labeled ground-truth (the true chord progression), and calculate frame-
level accuracy of the system (percentage of frames where chords are correctly recognized).

5.2 Results and Analysis

‘When caleulating the percentage of frames in which the recognized chords match the ground
truth, we tolerated small discrepancies of chord boundaries by up to b frames (0.5 second}.
For example, if frames 20 to 36 are recognized as a G major triad, while the labeled truth
says the same chord corresponds to frames 18 to 40, then frames 20 to 36 are all considered
to be correctly recognized. On the other hand, if the labeled frame boundary for this chord is
frames 18 to 30, then only 20 to 30 are considered correct while frames 31 to 36 are marked
incorrect. This tolerance is reasonable since the ground truth was hand-labeled by listening
to synthesized audio, so the chord boundaries can be slightly off by a few frames. In addition,
chord boundaries can interpreted in different ways in certain cases; for example, when two
consecutive chords share a same note which connects the two, that note can be seen as the end
of the first chord or the start of the second.

Figure 5.1 shows the recognized chord sequence of a phrase from Bach’s Prelude and Fugue
in C' Major (BWV 846). The segmented-lines show the chord names and boundaries recognized
by the system, and the vertical lines correspond to ground-truth boundaries. In this selection,
all frames are considered to be correctly recognized within our five-frame tolerance.

Table 5.1 shows frame-rate recognition accuracy in percentages. Analyses on the results
show that most errors occur in selections with a faster tempo. Many of these errors are
associated with non-chord passing tones. If the given input phrase has a fast tempo, each
frame window will cover more notes; therefore, it is more likely that several non-chord tones,

18

A
am
Gdom7
dm?7
CM Il CcM
5 10 >
Time {s)

Figure 5.1: Frame-level chord sequence {state path) of a selection from Bach's Prelude in C
Magjor (BWV 846). The vertical lines correspond to ground-truth boundaries.

or even two individual chords, are included in the same frame window. In these cases, the
system has a much harder time figuring out the chords when many notes are clustered in a
single frame.

This problem likely has to do with the fixed frame rate used in our system. A variable
frame rate would help avoid this kind of problems, i.e. the faster the tempo, the smaller the
frame window. However, an automated tempo identification requires beat identification. 9]
suggests that beat-synchronous analysis as in [1] helps improve accuracy because the rate of
chord changes is usually slower than beat changes, and non-chord tones usually occur off-beat.

Composer | # of Test Selections | Average Selection Length (second) { Accuracy

Bach i8 9.65 67.1%
Mozart 18 11.29 70.6%
Beethoven | 14 12.08 64.8%
Overall | 50 | 10.92 | 67.7%

Table 5.1: Frame-level accuracy on test selections

Another common type of errors has to do with confusion between non-chord tones and
certain tones of a Tth chord. For example, E minor seventh chord consists of notes E, G,

19

B, and D. Three of these four notes - G, B, and D - also form G major triad. The system
tends to mistakenly categorize E minor seventh as G major, if the note ¥ does not appear
strong in the feature vectors associated with the relevant frames. In many cases, the systemn
correctly recognizes a 7th chord, but mistakenly moves to the related major triad mid-way
before switching back to the correct Tth chord. We expect that this kind of confusion will he
significantly reduced if the training data are greatly enlarged.

5.3 Conclusion

In this paper, we created an HMM-based chord recognition system traimed on synthesized
classical music selections. The overall accuracy of 67.7% is comparable to most systems in pre-
vious works. However, our system considers more chord qualities (diminished and augmented
chords in addition to major and minor) than previous studies, as well as classifies 7th chords
as separate categories. This shows that HMM-based systems perform nicely on classical music.

Our system is based on first-order HMMSs, which ounly consider a single preceding chord
when making decisions on the optimal path. Since music theory tells us there are some chord
progressions more common than others, higher-order HMMs considering multiple preceding
chords will most likely improve performance of the system. This will likely require a signifi-
cantly larger training set, and may demand longer phrases or even entire compositions.

20

Bibliography

[1] J. P. Bello and J. Pickens, “A robust mid-level representation for harmonic content in
mausic signals,” in Proc. ISMIR, 2005, pp. 304~-311.

[2] C. A. Harte and M. B. Sandler, “Automatic chord identification using a quantised chro-
magram,” in Proceedings of the Audio Enginecring Society, 2012.

[3] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286, 1989.

/4] A. Sheh and D. P. Ellis, “Chord segmentation and recognition using em-trained hidden
markov models,” ISMIE 2008, pp. 185-191, 2003.

[5] D. Temperley, The cognition of basic musical structures. MIT press, 2004.

[6] T. Fujishima, “Realtime chord recognition of musical sound: a system using common lisp
music,” in Proc. ICMC, 1899, 1999, pp. 464-467.

[7] M. Miiller, Information retrieval for music and motion. Springer Heidelberg, 2007, vol. 6.

[8] M. Miiller and S. Ewert, “Chroma toolbox: Matlab implementations for extracting vari-
ants of chroma-based audio features,” in Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), 2011, pp. 215-220.

9] K. Lee and M. Slaney, “Automatic chord recognition from audio using a supervised hmm
trained with audio-from-symbolic data,” in Proceedings of the 15t ACM workshop on Audio
and music computing multimedia. ACM, 20086, pp. 11-2(.

[10] M. A. P. N. Perera and S. R. Kodithuwakku, “Music chord recognition using artificial
neural networks,” in Proceedings of the International Conference on Information and Au-
tomation, 2005, pp. 304-308.

[11] S. Kostka and D. Payne, “Tonal harmony. new york: Alfred a,” 2000.

[12] C. Harte, M. Sandler, S. Abdallah, and E. Gdémez, “Symbolic representation of musical
chords: A proposed syntax for text annotations,” in Proceedings of the International
Conference on Music Information Retrieval (ISMIR), 2005, pp. 66-T1.

[13] “Classical midi connection,” http://www.classicalmidiconnection.com.

21

[14] “Classical piano midi page,” hitp://www.piano-midi.de/midicoll.htm.

[15] “Timidity project,” http://timidity.sourceforge.net.

22

