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This paper utilizes Graph Theory to gain insight into the algebraic struc-
ture of a group using a Cayley digraph that depicts the group. Using the
properties of Cayley digraphs, we investigate how to tell if a given digraph
is a Cayley digraph, and we attempt to build Cayley digraphs. We then
use the Cayley digraph to find information about the structure of the cor-
responding group. Finally, we examine the results of removing generators
from a Cayley digraph and what it means if the digraph remains connected
or is disconnected by the process.
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1 Introduction

1.1 Graph Theory

Leonhard Euler is largely referred to as the father of Graph Theory for his solution to
a famous problem involving the seven bridges of Königsberg. In his 1736 publication
entitled, Solutio Problematis ad Geometriam Situs Pertinentis (Translated, The solution
to a problem relating to the geometry of position), Euler considered the seven bridges
that connected the city of Königsberg, in Prussia, across the Pregel River.[1]

Figure 1: Euler’s map of the seven bridges of Königsberg included in his publication.[2]

Euler faced the question: Is it possible to cross every bridge in Königsberg exactly once,
and then return to the starting point? Arguing that this was impossible, Euler used a
graph for the first time in history.[4] His graph, a set of vertices, together with a set of
edges connecting pairs of vertices, looked similar to the following graph, G:
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D

Figure 2: A graph G, modeling the Königsberg bridges.

Each vertex in the graph represents a land mass in Königsberg, and each edge repre-
sents a bridge connecting two land masses. Notice that this graph is connected, meaning
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that there exists a sequence of edges between any two vertices in the graph. Thus, if we
are at any land mass, we can get to any other land mass by crossing one or more bridges.

Euler observed that every time you step onto a land mass from a bridge, you must also
leave the land mass by a bridge. Then, it follows that, to cross each bridge exactly
once, you must have an even number of bridges so that having entered a land mass,
one can also exit it. Since each land mass in Königsberg has an odd number of bridges
connecting it to other land masses, at some point, one will enter a land mass but not be
able to exit the land mass by an untraversed bridge. In Graph Theory, this parallels the
idea that, for connected graphs, whenever you enter a vertex from one edge, you must
then leave that vertex by another edge. Consequently, in order to traverse each edge
exactly once, the graph needs to have an even number of edges adjacent to each vertex;
in other words, the degree of every vertex needs to be even.

This kind of traversal problem, where one must traverse every edge exactly once and
return to start, is described in modern Graph Theory as finding an Eulerian Tour, due
to Euler’s contribution to this problem.[6] Although we briefly consider Eulerian Tours
in this paper, we find more connections in our research with walks in graphs, which are
similar to Eulerian Tours except that we allow edges and vertices to be repeated. In
particular, we utilize closed walks, which are simply walks in which the endpoints are
the same.[6]

We could also look at a subgraph, of the graph of Königsberg, such as the graph H given
below. We define a subgraph H of a graph G as a graph such that the vertex set of H is
a subset of the vertex set of G, and the edge set of H is a subset of the edge set of G.[6]

C

A D

Figure 3: Subgraph H of the graph G of the Königsberg bridges.

A concept that we will use extensively in this paper is that of a directed graph, or digraph,
which is a graph in which the edges have associated directions from one vertex to the
other.[6] A digraph analog of the Königsberg graph may look like this:
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Figure 4: Digraph analog of the Königsberg bridge graph.

Note that in a digraph, I may have undirected edges; we can think of each undirected
edge as two directed edges, one directed toward one end vertex, and one directed toward
the other end vertex.

1.2 Group Theory

The beauty of Graph Theory is that it can be considered in isolation, but it also has
many applications to other fields. In particular, this paper considers the ways that
Graph Theory can aid in the study of the mathematical field of Group Theory. To be-
gin, we will give the basic definitions that one without any knowledge of Group Theory
should know before reading this paper.

First, a binary operation * on a set S is a function mapping S x S into S.[3] A binary
operation can be addition, multiplication, modular arithmitic, etc. In this paper, with-
out loss of generality, we resort to using multiplicative notation for the binary operation
of arbitrary groups unless otherwise stated.

The most important definition for this field is obviously that of a group: a set G, together
with a binary operation * is a group < G, ∗ >, if G is closed1 under *, if * is associative2, if
there exists an identity element3, and if there exists an inverse4 for every element of G.[3]

1A set S is closed under * if for all elements a, b in S, a ∗ b is also in S.[3]
2A binary operation * is associative in a set S if for all elements a, b, c in S, (a ∗ b) ∗ c = a ∗ (b ∗ c).[3]
3The identity element of a set S is an element e of S such that e ∗ x = x ∗ e = x for all x in S.[3]
4The inverse of an element a in a set S is an element a′ such that a′ ∗ a = a ∗ a′ = e.[3]

5



Example 1.1. If you look at the set Z of all integers, then you might notice that Z is a
group under addition, but not under multiplication since not every element of Z has an
inverse under multiplication. For example, 3 is an element of Z, but 3 does not have an
inverse in < Z, · >; there is no integer that you can multiply by 3 and get 1, the identity
in < Z, · >.

Example 1.2. A type of group that is used often in this paper is the group of integers
modulo n, Zn, where Zn = {0, 1, 2, 3, . . . , n − 1}, and the operation used is modular
arithmetic, which can be described in the following way: for an integer z, and natural
numbers n and r, then (z mod n) = r if r is the remainder when z is divided by n. For
elements a, b in Zn, we define a + b = (a + b) mod n.

We describe the order of a group G as the number of elements in G.[3]

Example 1.3. The group of integers, Z, with addition, has infinite order, while Z6, with
modular arithmetic, has order 6 (in general, Zn has order n).

We call a group G abelian if its binary operation is commutative5.[3]

Example 1.4. Both the groups < Z,+ > and < Zn,+ > are abelian.

If H, a subset of a group G, is closed under the binary operation of G, and if H is a
group under the binary operation of G, then H is a subgroup of G. A proper subgroup
of a group G is any subgroup of order strictly less than the order of G.[3] And the index
of a subgroup H of G is the order of G divided by the order of H.

Example 1.5. The group < 2Z,+ >, with elements of only the even integers, is a sub-
group of < Z,+ >. But < Z+,+ >, with elements of only the positive integers, is not
a subgroup of < Z,+ >. Even though Z+ is a subset of Z that is closed under the oper-
ation, < Z+,+ > is not a group under the binary operation (since there are no inverses).

A group G is generated by a set of elements S if S is a subset of G and every element
of G can be written as a combination of the elements in S.

For a group G, let x ∈ G. Then the set {xn|n ∈ Z}= < x >, 6 a subgroup of G, is the
cyclic subgroup of G generated by x. We say that the order of an element x is the order
of the cyclic subgroup generated by x.[3] We denote the order of an element x by o(x).

And a group is cyclic if there exists an element g in G such that G =< g > (i.e there
exists an element that generates all of G). We call g a generator of G.[3]

5An operation * is commutative in a set S if for all elements g and g′ in S, g ∗ g′ = g′ ∗ g.[3]
6The symbol “∈” means “an element of”, and we be used often to denote an element’s membership in

a set.
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Example 1.6. The easiest example of a cyclic group is < Zn,+ >. Consider < Z6,+ >
and 1 ∈ Z6. The cyclic subgroup generated by 1 would be

< 1 > = {1, 12, 13, 14, 15, 16} (1)

= {1, 2, 3, 4, 5, 0} (2)

which is found by repeatedly adding 1 to itself. Since < 1 >= {1, 2, 3, 4, 5, 0} = Z6, then
we would say that 1 generates Z6, or that 1 is a generator of Z6. And since there exists
a single element that generates the whole group, Z6 is cyclic.

For a subgroup H of a group < G, ∗ >, the left cosets of H in G are sets gH such that
g is an element of G and gH = {g ∗ h|h ∈ H}. Similarly, the right cosets of H in G are
sets Hg such that for an element g of G, Hg = {h ∗ g|h ∈ H}. And a subgroup H is a
normal subgroup in G if the left and right cosets agree, i.e. gH = Hg for all elements g
in G.[3]

Example 1.7. Consider the group G = Z2 × Z5
7, which is a direct product8 of groups

Z2 and Z5. Let’s look at the cosets of subgroup H = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 0)}.
Suppose we choose (1, 1) ∈ Z2 × Z5. Then,

(1, 1)H = {(1, 1) ∗ (0, 1), (1, 1) ∗ (0, 2), (1, 1) ∗ (0, 3), (1, 1) ∗ (0, 4), (1, 1) ∗ (0, 0)} (3)

= {(1, 2), (1, 3), (1, 4), (1, 5), (1, 1)} (4)

And (1, 1)H is a left coset of H in G. Similarly,

H(1, 1) = {(0, 1) ∗ (1, 1), (0, 2) ∗ (1, 1), (0, 3) ∗ (1, 1), (0, 4) ∗ (1, 1), (0, 0) ∗ (1, 1)} (5)

= {(1, 2), (1, 3), (1, 4), (1, 5), (1, 1)} (6)

So H(1, 1) is a right coset of H in G.

Notice that (1, 1)H = H(1, 1). If we show gH = Hg is true for all elements g in G, not
just (1, 1), then H is normal in G.

Next is the most important definition for the understanding of this paper.

Definition 1.8. A Cayley digraph is a visual representation of a group. It is a directed
graph in which each element of a group G is represented by a vertex, and each edge
represents multiplication on the right9 by an element of a generating set of G. [3]

7Notice that Z2 × Z5 is actually Z10.
8A direct product between two groups < G, ∗ > and < G′, ∗′ > is the group < G×G′, ∗ > where we

define (g, g′) as an element of G×G′ if g ∈ G and g′ ∈ G′. Then, for elements (g1, g
′
1) and (g2, g

′
2)

of G×G′, we define (g1, g
′
1) ∗ (g2, g

′
2) = (g1 ∗ g2, g′1 ∗′ g′2).[3]

9By convention, we always multiply on the right. We will break this convention briefly later in the
paper, but it is assumed that we are using right multiplication in all Cayley digraphs unless explicitly
stated otherwise.
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For example, if we say that the generator g is represented in a Cayley Digraph of a group
G by a solid arrow, then we would interpret the following as x ∗ g = y.

x y

We want to point out two conventions that we use when dealing with Cayley digraphs.

First, the manner in which we denote inverse of a generator: In the above figure, the
solid edge is represented by right multiplication by a generator g. If we travel in the
opposite direction of this arrow, we can think of that as multiplication on the right by
the inverse of g, or g−1. So the figure tells us that x ∗ g = y, but also that yg−1 = x.

Second, note that in a Cayley digraph, we can still have undirected edges, as in Example
1.10, that we would interpret again just as two directed edges, one directed toward one
end vertex, and one directed toward the other end vertex. And a generator represented
by any undirected edge will have order two in the corresponding group.

Example 1.9. The Cayley digraph of < Z6,+ >, where we represent each solid arrow
as multiplication on the right by the element 1, is shown in Figure 5:

0

1

2

3

4

5

Figure 5: Cayley digraph of < Z6,+ > with generating set {1}.

Example 1.10. Note that, by using different sets of generators, we can construct a
different Cayley digraph of < Z6,+ >. Suppose instead, we consider the generating set
{2, 3}. Each element does not generate < Z6,+ > by itself, but together they do. Let
a solid arrow represent “multiplication” on the right by 2 and a dashed arrow represent
multiplication on the right by 3. Then the Cayley digraph of < Z6,+ > would look like:
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Figure 6: Cayley digraph of < Z6,+ > with generating set {2, 3}.

By our convention, the name of each vertex in a Cayley digraph is not unique. We can
name each vertex independently, or we can name each vertex by the sequence of edges
between the identity and that vertex.

For example, we can refer the vertex represented by 3 in Figure 5 equivalently as {1, 1, 1}
since we can travel from 0 to 3 by a sequence of three edges represented by multiplication
on the right by 1.

In Figure 6, we can refer to the vertex represented by 3 equivalently as the sequence
{2, 2, 3, 2} since if you begin at 0 and follow two 2 edges, a 3 edge, and then another
2 edge, you will be at vertex 3. Furthermore, the vertex 3 could be represented by
{2, 3, 2, 2}, or {2, 3, 2, 3, 2, 3}, or many other different sequences. Each of these repre-
sentations are acceptable in this paper.

2 Properties of Cayley Digraphs

Since this paper focuses on Cayley digraphs, let’s discuss their construction. In order to
preserve the algebraic properties of the group, we construct Cayley digraphs in a specific
way. We care about four properties in particular.

Theorem 2.1. There are four properties that every digraph, G, must satisfy in order to
be a Cayley digraph10:

1. G must be connected.

2. Given vertices x and y, there exists at most one edge going from x to y.

10These properties will be referred to later in the paper by the numbers as listed here.
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3. Every vertex x in G has exactly one edge of each type starting at x and one of each
type ending at x.

4. If two different sequences of edges starting at some vertex x go to the same vertex
y, then whenever those sequences begin at the same vertex in G, they should always
lead to the same vertex. [3]

Proof. The first property applies since for elements g, x, h in a group G, every equation
gx = h has a solution. In a group, we know that every element has in inverse; thus, if
gx = h, then we know x = g−1h. So g is connected to h by a path in G.

Since the solution to gx = h is unique in a group, the second property applies.

The third property applies because, for any element x ∈ G and for each generator g, we
can compute xg and (xg−1)g = x. We know we can compute xg since the G is closed,
and we know that (xg−1)g = x because we have associativity of our operation and an
identity in G: (xg−1)g = x(g−1g) = x(e) = x.

And the fourth property applies since, for elements x, h, q, r, u in G, if xq = h and
xr = h, then uq = ux−1h = ur. Thus, we have that the operation is well defined.
[3]

On the other hand, we can also show that, given a digraph that satisfies the four prop-
erties, it must be a Cayley digraph for a group.

Theorem 2.2. Every digraph that satisfies the above four properties is a Cayley digraph
for a group. [3]

Proof. Let G be a directed graph with n different types of edges, and suppose that G
satisfies the four properties in Theorem 2.1.

Choose any vertex from G and label it e, as we will aim to prove that this is the
identity element in the corresponding group G. Since G is vertex-symmetric, by the
third property, then our choice of e does not matter. Now label each different type of
edge g1, g2, . . . , gn. For each gi edge leading away from e, label the vertex at the end of
that edge gi.

Let any edge gi starting at x ∈ V (G) and ending at y ∈ V (G) represent the right
multiplication of x by gi equal to y (i.e., xgi = y). By property 1 we know we can
denote any other vertex, y in G by a sequence of edges from e to y, or, equivalently, as
a product of g1, g2, . . . , gn.

Thus, we can define any vertex x ∈ G as a sequence of edges, S1. Suppose there is
another sequence of edges, S2, that can define x. So, starting at vertex e, two different
sequences of edge types lead to the same vertex x. By property 4, we know then that
those same sequences starting from any vertex u will lead to the same v. Thus, we
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have that the operation we have defined on the vertices of G is well defined: given any
sequence of edges from e to x, that sequence can be used to represent multiplication on
the right by x.

And as a consequence of property 1 and the construction of G, we know that the operation
we have defined is closed.

Now, let x, y, z ∈ V (G). Consider (xy)z. We would represent the vertex arrived at if
we began at x and followed a sequence of edges that defines y as (xy). We know (xy)
exists in G by the third property. Then (xy)z would be the vertex arrived at from vertex
(xy) after following the sequence of edges defined by z. Now x(yz) would represent the
vertex arrived at after starting at x and following the sequence of edges defined by yz.
Since we concatenate the sequences of edges defined by two elements of V (G) when we
multiply them, (xy)z and x(yz) will be a sequence of edges that go from the same vertex
x to the same vertex xyz. Thus, (xy)z = x(yz), and the operation of G is associative.

By how we have defined e, we have that e will be the identity since e(gi) = (gi)e = gi
for any vertex labeled g1, g2, . . . , gn in the way described earlier. And since each
element of G can be defined as the product of gi’s, then using associativity, we know
e times any element of V (G) will be that element because for any vertex v ∈ V (G),
v = (ga)(gb) . . . (gα), and

e(v) = e(ga)(gb) . . . (gα) (7)

= (e(ga))(gb) . . . (gα) (8)

= (ga)(gb) . . . (gα) (9)

= v. (10)

We can define the inverse of any edge g as going in the opposite direction of how g is
directed in G.11 Thus, we would interpret (gg−1) as starting at e, traveling to g, and then
traveling in the opposite direction on the edge g, back to e. Therefore, (gg−1) = e as de-
sired. So, we would define the inverse of any element x of V (G), as the sequence of edges
to get from x to e. This sequence can easily be found by traveling backwards through
the sequence of edges used to describe x in the first place. (i.e., if x = (g1)(g2)(g3), then
x−1 = (g−13 )(g−12 )(g−13 )). Then xx−1 will be interpreted as starting at e, traveling to x,
and then traveling back to e. Thus, xx−1 = e. Hence, all elements of V (G) have inverses.

Therefore, we have defined a set of elements, V (G), and an operation such that V (G)
is closed, has an identity, has inverses for all elements, and the operation is associative.
Thus, < V (G), ∗ > is a group.

11If g has order two, and therefore is represented by an undirected edge, then g = g−1, and that
undirected edge will represent both g and g−1.
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From this theorem, we know that if we can draw any graph that has these four prop-
erties, then the graph will be a Cayley digraph for a group. A question, however, is
how hard is it to actually draw a graph, without a preconceived notion of the group you
intend it to represent, that satisfies the four properties. In particular, we found the last
property is especially hard to predict.

In his text, A First Course in Abstract Algebra, Fraleigh claims that the four properties
that characterize every Cayley digraph have been used in discovering groups.[3] Thus,
we attempt to “discover” a group from a digraph that satisfies the four properties. Our
process is as follows: we choose an arbitrary number of vertices, choose one to two types
of edges that are intended to be generators, and then attempt to draw a digraph that
encompasses all four properties. Constructing a digraph the satisfies the first three is
easy enough, but it takes us several attempts to find a digraph that satisfies the last
condition. The following is one of the first attempts that proves to fail the fourth prop-
erty. The “generators” g1 and g2 are represented by solid arrows and dashed arrows,
respectively.

fe

g1

g2

a b

c

d

Figure 7: Failed attempt at drawing a digraph that satisfied all four properties.

As you can see, in Figure 7, the sequence of edges S1 = {g2} is the same as sequence
S2 = {g2, g1, g2, g1} if you start at e. If the fourth property is satisfied, then no matter
what vertex at which we start, we should end up at the same vertex by following S1 or
S2. However, if we start at vertex g1 and follow S1, we are at vertex d; and if we start
at vertex g1 and follow S2, we are at vertex g1. Since we do not end at the same vertex,
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the fourth property is not satisfied, and this digraph is not a Cayley digraph of a group.

Using the same process, we finally managed to discover a digraph that turned out to be
the Cayley digraph for the Dihedral group on 10 elements, DiH5, which is the group of
symmetries of a regular pentagon. In the following digraph, let the solid edges represent
multiplication on the right by the generator g1 and the dashed edges represent multipli-
cation on the right by the generator g2.

12
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g1
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Figure 8: Cayley Digraph of DiH5

e g1 g2 a b c d f h j

e e g1 g2 a b c d f h j
g1 g1 b a c d h f e j g2
g2 g2 j e f h d c a b g1
a a g2 g1 e j f h c d b
b b d c h f j e g1 g2 a
c c a b g1 g2 e j h f d
d d f h j e g2 g1 b a c
f f e j g2 g1 a b d c h
h h c d b a g1 g2 j e f
j j h f d c b a g2 g1 e

Table 1: Cayley Table for DiH5

We can confirm that the digraph we discovered is a Cayley digraph for a group by com-

12Note that the dashed edges have no arrow tips; this is because each undirected edge represent two
directed edges, one in each direction, between the two vertices.
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pleting the Cayley Table13 for the set of vertices in our digraph, as seen above, and then
matching this table with the Cayley table for DiH5.[5]

However, even though we successfully “discovered” a Cayley digraph, the question re-
mains as to whether or not, given a digraph, we can visually detect if the fourth property
is satisfied. We come to the conclusion that there is no simple way to check the satis-
faction of the fourth property without checking every sequence of edges in the graph,
which is often more time consuming than just naming the elements and investigating
the multiplication table.

This question sparked an interest in finding properties of a group that could be visually
determined by its Cayley digraph, as the next section reveals.

3 Information given by the Structure of a Cayley
Digraph

3.1 Abelian

Wondering what properties of a group we can determine from the structure of a Cay-
ley digraph, we begin with the following question: Can you tell from a Cayley digraph
whether the corresponding group is abelian?

Fraliegh claims that the answer is yes.[3] Thus, we come up with a method for analyzing
a Cayley digraph to ascertain if a group is abelian.

Proposition 3.1. Given a Cayley digraph G of some group G with generating set
{g1, g2, . . . , gn}, represented by n different edge types in G, one can determine if G is
abelian by the following method:

1. Choose any two types of edges G, say g1 and g2.

2. Select a vertex in G, say x.

3. Starting at x, follow a g1 edge, then a g2 edge. Note the vertex at which you finish.

4. Now, starting at x, follow a g2 edge, then a g1 edge. Note the vertex at which you
finish.

13A Cayley Table is a table that lists the elements of the group on the top row and left-most column,
and each box in ith row and jth column is the element that represents the ith element times the
jth element.[3]
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5. If the vertex at which you finish after the sequence of edges {g2, g1} is the same
vertex at which you finished when you followed the sequence of edges {g1, g2}, then
repeat this process for every pair of generators. If you finish at the same vertex
each time, then G is abelian.

6. If you finish at different vertices for any of the pairs of generators, then G is not
abelian.

If we follow the above process, it is obvious that each pair of generators will commute.
But why does this mean that G is abelian?

Proof. Suppose we have a Cayley digraph G of some group G with generating set
{g1, g2, . . . , gn}.

If we find that there exist generators gi and gj such that gigj 6= gjgi by the above process,
then we know that G cannot be abelian, since every element of G must commute.

However, if we find that each pair of generators {g1, g2, . . . , gn} in G commute with each
other by the above process, then for any two elements x, y ∈ G, we can write x and y as
some product of generators, x = gagb . . . gk and y = ga′gb′ . . . gk′ . Then, we know that:

xy = (gagb . . . gk)(ga′gb′ . . . gk′) (11)

= gagb . . . (ga′gk)gb′ . . . gk
′ (12)

= gagb . . . ga′(gb′gk) . . . gk′ (13)

... (14)

= (ga′gb′ . . . gk′)(gagb . . . gk) (15)

= yx (16)

Thus, we know that for any two elements x, y ∈ G, we have xy = yx. Hence, by
definition, G must be abelian.

Example 3.2. To illustrate this method, consider the following Cayley digraph G, rep-
resenting some group G.

15
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d

Figure 9: Given a Cayley Digraph G.

Since we only have two generators, we call them g1 and g2. Now, let’s select vertex e. If
we begin at e and follow the sequence of edges {g1, g2} we will end at vertex d. Similarly,
if we start at vertex e and follow the sequence of edges {g2, g1}, we will end at vertex
d again. Thus, eg1g2 = g1g2 = d and eg2g1 = g2g1 = d so g1g2 = g2g1 = d. And, by
Proposition 3.1, G is abelian.

After close inspection, you may notice that G is actually a Cayley digraph of Z2 × Z5,
with generators (0, 1) and (1, 0) as g1 and g2 respectively.
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(0, 0)

(0, 4)

(0, 3) (0, 2)

(0, 1)

(1, 0)

(1, 4)

(1, 3) (1, 2)

(1, 1)

Figure 10: Cayley Digraph of Z2 × Z5

Since we know that Z2 × Z5 is actually Z10, which we know to be abelian, we get the
result that we would expect from Proposition 3.1.

Example 3.3. On the other hand, suppose you are given the following digraph G ′ of
some group G′.

e

g1

b d

f

g2

a

c h

j

Figure 11: Given a Cayley Digraph G ′.

Again, we only have two types of edges in our Cayley digraph, so we must use generators
g1 and g2 again. Let’s choose the vertex e again. Then, beginning at vertex e, if we follow
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the sequence of edges {g1, g2}, we will finish at vertex a. And, starting at vertex e, if we
follow the sequence of edges {g2, g1}, we will finish at vertex j. Since a = g1g2 6= g2g1 = j,
then Proposition 3.1 tells us that G′ is not abelian.

You may notice that Figure 11 is isomorphic to a Cayley digraph of DiH5, which we
know to be nonabelian.

3.2 Cyclic

A similar question we consider is: Can you tell from a Cayley digraph whether the
corresponding group is cyclic?

We have no immediate answer to this question from any reference we could find, as we
did with the previous question, and we find no elegant answer as we had hoped, but we do
manage to describe a method for investigating if a group is cyclic from a Cayley digraph.

Proposition 3.4. Given a Cayley digraph G of some group G, it can be determined if
G is cyclic if you can construct a closed walk in G, starting at the identity, consisting of
a sequence of one single path and that closed walk includes all of G.

Example 3.5. Suppose we consider the following Cayley digraph of G∗ of some group
G∗.

0

a

g1

g2

b

c

Figure 12: Given Cayley digraph G∗ of group G∗.
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By Proposition 3.4, if we can find a closed walk in G∗ by repeating a sequence of one
single path that consists of every vertex and edge of G∗, then G∗ is cyclic.

Consider the following path: {g1, g2}. We claim that if you repeat this sequence, then
you will have a closed walk of G∗ that is all of G∗, and thus prove that G∗ is cyclic.

Let’s check: Start at e. If we follow this sequence once, we have traversed the following
red edges, and we included the following red vertices in our walk:

0

a

g1

g2

b

c

Figure 13: Given Cayley digraph G∗ of group G∗ after we have traversed the edges in
the sequence {g1, g2}.

If we repeat this sequence of edges over and over again, we get the following graphs, with
the traversed edges in red, and included vertices in red:
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0

a

g1

g2

b

c

Figure 14: Given Cayley digraph G∗ of group G∗ after we have traversed the edges in
the sequence {g1, g2} twice.

0

a

g1

g2

b

c

Figure 15: Given Cayley digraph G∗ of group G∗ after we have traversed the edges in
the sequence {g1, g2} three times.
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0

a

g1

g2

b

c

Figure 16: Given Cayley digraph G∗ of group G∗ after we have traversed the edges in
the sequence {g1, g2} four times.

0

a

g1

g2

b

c

Figure 17: Given Cayley digraph G∗ of group G∗ after we have traversed the edges in
the sequence {g1, g2} five times.
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0

a

g1

g2

b

c

Figure 18: Given Cayley digraph G∗ of group G∗ after we have traversed the edges in
the sequence {g1, g2} six times.

Thus, by repeating that sequence of edges {g1, g2} six times, we have included every ver-
tex and every edge of G∗ in our walk and returned to where we began, at vertex e. By
Proposition 3.4, we have that G∗ is cyclic. In fact, G∗ is isomorphic to the Cayley di-
graph of < Z6,+ > with generating set {2, 3}, where generator g1 corresponds to 2 and
g2 corresponds to 3. And we know all groups < Zn,+ > to be cyclic.

3.3 Cyclic Subgroups

Now that we know how to determine if a group is cyclic based its representation in a
Cayley digraph, we consider how to determine, from a Cayley digraph, the cyclic sub-
groups of the group being represented.

Proposition 3.6. Given a Cayley digraph G of some group G, you can find all of the
cyclic subgroups of G by the following method:

1. Choose a vertex of G. Say x.

2. Since each vertex of G can be represented by a sequence of edges of G, use this
representation for x.

3. Let S be the set of vertices reached by starting at the identity and repeatedly ap-
plying the sequence of edges that represent x until you arrive back at the identity.
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4. Then the set S will contain the elements of G in the cyclic subgroup of G generated
by x.

Note: To find all cyclic subgroups of G, you can repeat this process for every element of
G.

Proof. Let G be a Cayley digraph for some group G and let y be an element of G.
Suppose you used the above procedure of repeatedly applying the sequence of edges
that represent y in G to get the set S of vertices reached by this process. Then, we can
think of each vertex in S as a “power” of y since you have arrived at that vertex from
the identity just by following “y”. And S = {y, y2, . . . , yo(y) = e} is the cyclic subgroup
generated by y.

Example 3.7. Let’s find a cyclic subgroup of the following Cayley digraph Ĝ of some
group Ĝ.

e

g1

g2

a

b

c d

f

Figure 19: Given Cayley digraph Ĝ of some group Ĝ.

14

We can choose any vertex in Ĝ, so let’s choose vertex c. Our first step is to write c as
a sequence of g1 and g2 edges, starting at the identity. Thus, c = g2g1. We will let S
represent the set of vertices reached by repeatedly applying the sequence of edges {g2, g1}.

Now, we will begin at the identity and follow {g2, g1} to our vertex c. Our path will be
highlighted in red, as well as the elements being added to S.

14a = g21 = g22 , b = g31 , c = g2g1, d = g32 , f = g1g2
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e

g1

g2

a

b

c d

f

Figure 20: Given Cayley digraph Ĝ of some group Ĝ, following the sequence of edges
{g2, g1}.

At this point, S contains c.

We will now repeatedly follow the sequence of edges {g2, g1} until we arrive back at e,
keeping track of our set S along the way.

e

g1

g2

a

b

c d

f

Figure 21: Given Cayley digraph Ĝ of some group Ĝ, following the sequence of edges
{g2, g1}.

Now, S contains c and a.
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e

g1

g2

a

b

c d

f

Figure 22: Given Cayley digraph Ĝ of some group Ĝ, following the sequence of edges
{g2, g1}.

Now, S contains c, a, and f .

e

g1

g2

a

b

c d

f

Figure 23: Given Cayley digraph Ĝ of some group Ĝ, following the sequence of edges
{g2, g1}.

Thus, we are back at e, and S = {c, a, f, e}. Therefore, by Proposition 3.6, the set S
represents the cyclic subgroup generated by c, i.e.,

< c > = {c, a, f, e} (17)

= {c = g2g1, a = (g2g1)
2, f = (g2g1)

3, e = (g2g1)
4}. (18)
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We also consider whether, given a Cayley digraph, if we can get information about
the normal subgroups of a group. We found a partial answer to this question after we
discovered the process presented in the next section, where we remove edge types from
the digraph and possibly disconnect the Cayley digraph. We will discuss how to look at
a Cayley digraph to find certain normal subgroups of a group later in this next section.

4 Disconnecting Cayley Digraphs

We find that removing one type of edge from a given Cayley digraph may give us valu-
able information about the group. Does the graph stay connected? Does it become
disconnected? If so, what do the connected components look like? The answers to these
questions lead to interesting results about the underlying group structure.

4.1 Connected

First, let’s investigate what happens when we remove all edges of one type from a Cayley
digraph, but the digraph remains connected.

Example 4.1. Consider the following Cayley digraph of < Z6,+ >, with generating set
{1, 2}, where the solid edges represent 1 and the dashed edges represent 2:

0

1

2

3

4

5

Figure 24: Cayley digraph of < Z6,+ > with generating set {1, 2}.

If we take away the dashed edges, then we have the following connected digraph:
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0

1

2

3

4

5

Figure 25: Resulting digraph when generator 2 is removed.

This is still a Cayley digraph of < Z6,+ >, as you can see.

Examples similar to the one above lead us to the following theorem.

Theorem 4.2. Let G be a Cayley digraph of a group G. Suppose all edges of one type
are removed from G, and the resulting graph G ′ remains connected. Then G ′ remains a
Cayley digraph of G.

Proof. Let G represent a Cayley digraph of a group G. Then G satisfies the four proper-
ties.

If we remove one type of edge from G, and the resulting graph G ′ is connected, then we
know that G ′ satisfies the first condition.

Since G ′ ⊂ G, then it is easy to see how properties 2, 3, and 4 hold in G ′. Since the only
change made between graphs G and G ′ is the removal of edges, and G satisfied properties
2, 3, and 4, then the following is true: G ′ will not have more than one edge from some
vertex x to some vertex y, else G would have failed property two. Every vertex in G ′
will still have exactly one edge of each type starting and ending at that vertex since
all edges of just one type have been removed. And, finally, we know that there are no
sequences in G ′ that fail the fourth property else those sequences would have failed the
fourth property in G as well.

Thus, G ′ satisfies all four properties and must be a Cayley digraph of G by Theorem 2.1.

Theorem 4.2 makes intuitive sense if we think about the interpretation of the Cayley
digraph in algebraic terms. If one generator is removed from the original generating set,
but that set still generates the entire group, then we still have a generating set for the
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group. Thus, there should be a Cayley digraph to represent it relative to the new gener-
ating set. In the previous example, it is obvious that the second digraph is still a Cayley
digraph of < Z6,+ > because the new generating set, {1}, still generates < Z6,+ >.

4.2 Disconnected

More interesting results come from studying what happens when a Cayley digraph be-
comes disconnected when one edge type is removed.

Theorem 4.3. Let G be the Cayley digraph of a group G. Suppose all edges of one type
are removed from G and the resulting graph G ′ is disconnected. Then:

1. The connected component containing the identity of G is the Cayley digraph of a
proper subgroup H of G.

2. The other connected components correspond to the distinct left cosets of H in G.

Proof. (1) Each connected component in G is a proper subgraph of G and represents a
proper subset of G. Consider the connected component H containing the identity. Even
though one type of edge has been removed, the properties 2, 3, and 4 were satisfied in
G, and these properties will still hold if we remove one edge type, as seen in the proof of
Theorem 4.2. Thus, the connected component containing the identity satisfies all four
properties and has the identity element of G. And, by Theorem 2.2, this component
represents a Cayley digraph of a proper subgroup, H, of G.

(2) We will prove the second part of this theorem with a double inclusion; we will show
that for some element x of G, the left coset xH is a subset of the connected component
containing x in G ′, and then we will show that the connected component containing x
is a subset of xH.

Consider a connected component in G ′, and let x be an element of that component. Let
h1 ∈ H. Then there exists a path from the identity to h1 in H.
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Figure 26: There is some path in H between e and h1.

Since this path exists in G, and G is a Cayley digraph, then, by the third property,
we know we can construct the same path from x to xh1 in the connected component
containing x in G ′. We can do this in the following way: we know that the first edge
in the path from e to h1 will be adjacent to x because there existed exactly one edge of
each type starting at x in G.

Figure 27: We know that this first edge is adjacent to x because the third property of
Cayley digraphs is satisfied in G.

Similarly, we know that the next edge in the path from e to h1 will be adjacent to the
vertex that is adjacent to x by the first edge for the same reason.
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Figure 28: We know that this second edge is incident to the first edge because of the
same reason.

In this way, we can construct the same path from x to the vertex xh1 that existed
between e and h1. We can call this vertex xh1 by the convention of our Cayley digraph
and right multiplication.

Figure 29: We can construct the path represented by h1, and we know have xh1 in the
connected component containing x.

Thus, for any element h ∈ H, we know xh is in the connected component containing x.
Since the set {xh|h ∈ H} is the left coset xH, we have xH is a subset of the connected
component containing x. We have proven the forward inclusion.

Now, consider an element y of the connected component containing x. We know x and
y must be connected by a sequence of edges in G ′. Let’s call this sequence S.
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Figure 30: Since x and y are in the same connected component, we know that they are
connected by some sequence of edges S in G ′.

Using the same logic as before, we can construct that same sequence of edges S in H,
starting at the identity. The vertex at which the sequence S, starting from the identity,
ends is an element of H, say h∗.

Figure 31: This sequence of edges S exists in H.

By property four of Cayley digraphs, we know that wherever this sequence S exists, it
is equivalent to multiplication on the right by h∗. Thus, in the connected component
containing x, we can interpret y as xh∗, since if we follow the sequence S (equivalent
to h∗) starting at x, we get to y. Thus, every element of the connected component
containing x can be written as xh where h ∈ H. Therefore the connected component
containing x is a subset of the left coset xH. And, we have the reverse inclusion.

So we have the connected component containing x as a subset of xH, and xH as a subset
of the connected component containing x. Hence, the connected component containing
x is the same as the left coset xH.
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In general, we have that each of the connected components of G ′ represent a left coset
of H in G.

By this result, it follows that:

Corollary 4.4. The number of connected components in G ′ will be equal to the index of
H in G.

To illustrate the concept of Theorem 4.3, let’s reconsider the Cayley digraph that repre-
sents the group DiH5, with generating set {g1, g2}, where each solid edge is represented
by multiplication on the right by g1 and each dashed edge is represented by multiplication
on the right by g2:

e

g1

b d

f

g2

a

c h

j

Figure 32: Cayley Digraph of DiH5 with generating set {g1, g2} and right multiplication.

If we take away generator g1, represented by the solid, directed edges, then the corre-
sponding digraph looks like the following:
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e

g1

b d

f

g2

a

c h

j

Figure 33: Resulting digraph when g1 edges are removed.

Thus, by our theorem, H = {e, g2} is a subgroup of DiH5 and the left cosets are:

g1H = {g1, g1g2 = a}, (19)

(g1)
2H = {g21 = b, g21g2 = c}, (20)

(g1)
3H = {g31 = d, g31g2 = h}, (21)

(g1)
4H = {g41 = f, g41g2 = j}. (22)

4.3 Normal Subgroups

In our proof, we show how one can get the left cosets of a certain subgroup using a given
Cayley digraph, but it is also possible to see the right cosets of the subgroup as well. In
order to produce the right cosets using this process, we need to change our convention
of multiplication on the right, to multiplication on the left.

Thus, if we redefine our operation and let each solid edge represent multiplication on
the left by generator g1 and each dashed edge represent multiplication on the left by
generator g2, then we can apply the same process above and be able to see the right
cosets of DiH5. As you can see in the following figure, the underlying digraph structure
is the same, but the labeling of the vertices changes slightly:
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e

g1

b d

f

g2

j

h c

a

Figure 34: Cayley Digraph of DiH5 with generating set {g1, g2} and left multiplication.

Now, let’s remove the solid edges representing generator g1 again:

e

g1

b d

f

g2

j

h c

a

Figure 35: Resulting digraph when g1 edges are removed.

Now, an argument analogous to the proof of Theorem 4.3 tells us that H = {e, g2} is a
subgroup of DiH5, and the corresponding right cosets are:

Hg1 = {g1, g2g1 = j}, (23)

H(g1)
2 = {g21 = b, g2g

2
1 = h}, (24)

H(g1)
3 = {g31 = d, g2g

3
1 = c}, (25)

H(g1)
4 = {g41 = f, g2g

4
1 = a}. (26)
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Not only does this help us visualize the left and right cosets for a group, but we can also
use this as a method to test whether or not a group has normal subgroups.

Corollary 4.5. Given a Cayley digraph G of a group G, you can apply Theorem 4.3 to
obtain a disconnected graph G ′ that represents the subgroup H of G and the left cosets
of H. Then, you can find the right cosets of H by using left multiplication instead of
right multiplication in the application of Theorem 4.3. If the right and left cosets are the
same, then H is a normal subgroup of G.

In our example of the DiH5 group, we can see that H is not normal since g1H =
{g1, g1g2 = a} 6= Hg1 = {g1, g2g1 = j}.

4.4 Conjectures

In studying the implications of Theorem 4.3, we investigated a couple conjectures in-
volving the structure of the connected components of the disconnected digraph G ′ by
following our intuition on a few small examples.

Consider a Cayley digraph of DiH5 again.

e

g1

g21 g31

g41

g2

a

c h

j

Figure 36: Original Cayley Digraph of DiH5 with generating set {g1, g2}

And let’s remove all g1 edges from our Cayley digraph.
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e

g1

g21 g31

g41

g2

a

c h

j

Figure 37: Resulting digraph when g1 edges are removed.

After we remove all g1 edges, there is exactly one power of g1 in each of the connected
components in Figure 9, and the number of connected components is five, the order of
g1 in G.

This example, along with a couple others, leads us to the following conjecture.

Conjecture 4.6. Given a Cayley digraph G of a group G, when we remove all edges
belonging to generator g, and the resulting graph G ′ is disconnected, then each connected
component contains exactly one power g. Then, the number of connected components in
G ′ correspond to the order of g.

But, we find that this is not always true.

Counterexample 4.7. Consider the Quaternion Group, Q8:
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e

g1

g2

g21

g31

c d

f

Figure 38: Cayley digraph of Q8.

If we remove the generator g1, then we get:

e

g1

g2

g21

g31

c d

f

Figure 39: Resulting digraph when generator g1 is removed.

As you can see, we only have two connected components, even though the order of g1
is four, and there are two powers of g1 in each component. Thus, this fails our conjecture.

After we find Conjecture 4.6 to be wrong, we try to reason that there has to be at least
one power of the generator removed in each connected component of G ′.
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Conjecture 4.8. Orphan Problem: Is it possible, when generator g is removed and the
graph becomes disconnected, for there to be an “orphan” connected component that has
no power of g in it?

Several examples, including Q8, give the impression that no orphan component can ex-
ist. However, in trying to prove that this is true, we found another counterexample.

Counterexample 4.9. Here is a group where we get an “orphan” connected compo-
nent (actually several) when we remove one generator. This is the Cayley digraph of the
group A4, the alternating group of even permutations on four elements, with generators
r1, represented by the solid black edges, and u1, represented by the dashed edges.

e

r1r2

u1

r6r8

r3r5

u2

r4 r7

u3

Figure 40: Cayley digraph of A4.

If we remove the generator u1 from the Cayley digraph, we get the following disconnected
graph:
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e

r1r2

u1

r6r8

r3r5

u2

r4 r7

u3

Figure 41: Resulting digraph when all u1 edges are removed from the Cayley digraph of
A4.

As you can see, only two of the four connected components contain a power of u1, the
component containing u1 and the component containing e = (u1)

2. Thus, the bottom two
components are “orphans”.

If one can begin with a given Cayley digraph of some group G and then determine a
subgroup H of the group and the corresponding cosets of H, then can we begin with a
given group G and proper subgroup H and find a representation of that group such that
H and corresponding cosets are visible as in Theorem 4.3? This is the question which
sparked the following conjecture:

Conjecture 4.10. Given a group G, suppose we have a proper subgroup H of G. Then,
we can construct the Cayley digraph of G in the following way:

1. Choose a generating set of H. Say H =< g1, . . . , gk >.

2. Construct a Cayley digraph of H.

3. Make n− 1 copies of H, where n is the index of H in G.

4. Choose an element x ∈ G \H. 15

15The symbol “\” here means “minus”, i.e., x ∈ G \ H means that x is an element of G, but not an
element of H.
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5. Then G =< g1, . . . , gk, x >.

But, this conjecture turns out to be untrue.

Counterexample 4.11. Suppose we are given the group Z2 × Z5 × Z7 × Z11. We
choose H to be Z2 × Z5 × {e} × {e}. We can follow numbers one through four of
the Conjecture 4.10 and choose a generating set, say < (1, 0, 0, 0), (0, 1, 0, 0) >, con-
struct the corresponding digraph of H and 76 other connected components identical
to H, but the issue comes with the conclusion in step five. Say we had chosen x to
be (0, 0, 1, 0), which is in Z2 × Z5 × Z7 × Z11 but not Z2 × Z5 × {e} × {e}. Then
G 6=< (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) >. For example, (1, 1, 1, 1) is in G, but not in
< (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) >.

However, we believe only a slight alteration to this conjecture is needed. Although it is
left unproven, we believe the following to be true:

Conjecture 4.12. Given a group G, suppose we have a proper subgroup H of G. Then,
we can construct the Cayley digraph of a subgroup H+ of G for which H is also a proper
subgroup in the following way:

1. Choose a generating set of H. Say H =< g1, . . . , gk >.

2. Construct a Cayley digraph of H.

3. Make n− 1 copies of H, where n is the index of H in G.

4. Choose an element x ∈ G \H.

5. Then H+ =< g1, . . . , gk, x >, where H+ is a subgroup of G.

Thus, we may not always be able to construct the Cayley digraph of G with this method
(although we will in some instances), we will always be able to construct the Cayley
digraph of a subgroup of G on which we can apply Theorem 4.3 with this method.

5 Further Research

A thorough investigation of the information you can discover about the algebraic prop-
erties of a group from a Cayley digraph would take more time and resources than two
semesters and an undergraduate education would allow. Therefore, there is much more
research to be done on this topic.

Since we were never able to come up with a foolproof way to generate a digraph that
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satisfied the four properties, one might further investigate ways either to determine if
the fourth property is satisfied in a given digraph, having already generated a digraph
satisfying the first three properties, or to ensure that the fourth property is satisfied
while in the process of generating a digraph.

It would be interesting to investigate if there was a way to easily change a Cayley
digraph from right multiplication to left. If this were possible, it would be much easier
to implement Corollary 4.5 in order to compare left and right cosets of a subgroup of
the corresponding group.

One might also consider other important properties of a group that may be visually
determined by a Cayley digraph besides being abelian, being cyclic, and investigating
cyclic subgroups and normal subgroups. There are many algebraic properties that math-
ematicians value in a group that would be interesting to look for in a Cayley digraph.

Furthermore, noting that some of our constructions for visually determining algebraic
properties in a Cayley digraph were inefficient to implement for larger groups, one could
attempt to find a more practical way of testing Cayley digraphs for cyclic subgroups, for
example. Our method works, but uses an inefficient “brute force” approach that could
possibly be improved upon.

6 Conclusion

The results of this paper primarily function to present a different perspective in two
different fields of mathematics. Graph Theory introduces a unique way of viewing a
group; we rely not on multiplication tables or textbooks to tell us if Z2×Z5 is abelian, or
cyclic, we can confirm these facts for ourselves using graphs and Graph Theory analysis.
In addition, we can look at digraphs in a different way; every digraph has the potential to
be a Cayley digraph if it fulfills our properties. A careful drawing of dots and arrows can
turn into a representation of a group. The combination of these two fields introduces
new ideas and connections for both fields to consider. We managed to capture the
abstractness of a group and put it into a graph so we could see each element, represent
certain cosets, and investigate cyclic subgroups. It creates a new way to experience, and
understand, group theory.
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