CARDIAC: BasysZ2 Edition

User Manual

Eric W. Mann
5/10/2014

Learn to input, step through, run, and modify programs using the architecture of the CARDIAC computer
developed by Bell Telephone Laboratory in 1968 which has been implemented using a Basys2 FPGA
board.

Table of Contents:

Introduction to the CARDIAC
Diagram of the CARDIAC
Example Summation Program
Operation Codes (op-codes) Chart
The Basys2 FPGA Board
Basys2 Board Diagram
Input / Output of Basys2
Implementing the CARDIAC on the Basys2 Board
Modes of Execution
Display Selection Options
Running a Program
Loading a Program
Running a Program and Viewing Results
Running a Program using Input and Output
Example Summation Program using Input and Output
Loading a Program
Running a Program and Viewing Results
Appendix
Sample Programs

How to Read Binary

[1]

10

11

11

12

13

I5

11

13

Introduction to the CARDIAC

The CARDIAC computer was a “toy” computer that was created by Bell Telephone
Laboratories in 1968 to aid students in learning how a computer operated. CARDIAC is an
acronym derived from the following: CARDboard Illustrative Aid to Computing. As the name
implies, the CARDIAC was a learning aid not meant to be used for calculations or computations.

There are four components to the CARDIAC. The first is the memory which can store
up to 100 signed three digit numbers ranging from -999 to +999. The memory holds both data
and instructions which are stored as numbers. Next, is the Instruction Register which holds the
current instruction being executed. Since a program is a sequence of instructions, the Program
Counter is a register that hold the memory location of the next instruction (the user keeps track
of the next instruction). The last of the four components, the Accumulator, is a register that holds
the results of calculations for later use. Below is a picture of the CARDIAC and its components:

Accumulator Y Memory
‘Instruction Register

To use the CARDIAC, a user must first enter a program into memory before executing
the program. By convention, the first instruction of the program is placed at location “00”
followed sequentially by the remaining instructions. A sample program to add two numbers is
listed below:

06 000 Sum

[2]

As seen in the above program, cach instruction has two parts. The first digit is the
Operation Code’ (or op-code for short) which tells the CARDIAC what to do. The two digits of
the instruction is a memory address; most instructions need to access the data stored in memory.
Below is the list of ten different op-codes and what each of them does:

4 Shift: Shift the Accumulator in the following manner

400 = Does not shift the Accumulator _

410 = Shifts the Accumulator left one digit

401 = Shifts the Accumulator right one digit

411 = Shifts the Accumulator left one digit, then right one digit resulting in no shift
4XY (where X and Y are neither 1 nor 0) = Not supported. Results are unpredictable

Store; Saves the contents of the Accumula

8 Jump: Loads the Program Counter with the given memory address

The first instruction of the simple addition program given above is “104”. This is
composed of “17, the op-code, and “04”, the memory address. The op-code “1” in the
instruction tells the CARDIAC 1o load the contents of memory at location “04” (A, or “002” in
the case of the sample program) into the Accumulator. After the first instruction is executed, the
next instruction in memory gets executed. In this case, the next instruction is “205”. This
instruction will add (op-code “2”) the contents of memory at location “05” (B, or “003”) to the
contents of the Accumulator which is currently set to “002” from the previous instruction. After
the addition, the Accumulator will contain “005” which is the result of “002 + 003”. The
program will continue in this manner executing each instruction sequentially until it reaches the
halt command (op-code “9”) where the calculations will stop and be reset to given memory
location.

! For more detailed information on the op-codes and their functions, see the technical manual

(3]

The Basys2 FGPA Board

The Basys2 board is an FPGA (field programmable gate array) board that can be used to
simulate the functions and implements the CARDIAC. The picture below displays the parts of
the board that are being utilized for the CARDIAC:

LEDs (8)

Power Cable

Connection E

Power Switeh -4 1igit Display
Buttons (4)

| es (8)

The use of the board is not as straight forward as using a pencil and eraser to put data into
memory or even slide cards to do the operations (as was the case for the CARDIAC). The
Basys2 board uses switches, LEDs, buttons, and a four digit display for input, output, and
operation of the implemented version of the CARDIAC, The numbering scheme used for the
switches, buttons, LEDs, and display start at the far right with 0, and going up by one towards
the left. This is the numbering scheme (referred to as zero-based indexing) which will be used
throughout the rest of the manual and is as follows:

NOTE: The numbering of components is from right to lefi on the Basys2 board.
% Switches (sw): 7,6, 5,4,3,2,1,0

» Hx: The second switch from the right will be referred to as sw(1)
“ LEDs(ld):7,6,5,4,3,2,1,0

* Ex: The second LED from the left will be referred to as 1d(6)
< Buttons (btn): 3,2, 1,0

= Ex: The button to the farthest right will be referred to as btn(0)
% Four Digit Display (dsp): 3,2, 1,0

* Ex: The leftmost digit of the display will be referred to as dsp(3)

*,

[4]

Implementing the CARDIAC on the Basys2 Board

The most challenging aspect of implementing the CARDIAC on the Basys2 board was
working with the limited I/O. In order to circumvent the issue, different modes were added to
allow for expanded functionality of the switches, buttons, LEDs, and the small display that is on
the board. There are four modes that are used to operate the CARDIAC to its fullest: Mode 0,
Mode 1, Mode 2, and Mode 3. The first two switches from the left, sw(7) and sw(6), are used to
select the active mode. This information is summarized below:

(NOTE: when a switch is in the off position, it means the switch is facing downwards, away from
the LEDs. The switch is on or active when it is flipped up towards the LEDs)

%+ Mode 0: Clears the Control Unit
= Active when both sw(7) and sw(6} are off
++ Mode 1: Sets the address of the memory
» Active when sw(7) is off and sw(6) is on
s+ Mode 2: Sets the contents of the memory
» Active when sw(7) is on and sw(6) is off
% Mode 3: Execution mode where the program is ran
s Active when both sw(7) and sw(6) are on

e

sw(3 m(J) are used as the iglt to be entered
NOTE: all digits entered are in binary

switches sw(3 — 0) are used for the digit to be assigned to memory. sw(4) is used when
btn(2) is pressed to set the sign of the number along with the upper digit.
NOTE: all digits entered are in binary

o1
Q
-
<
=

s(S) is used to run the program instead of steppg throug it. sw{ 1- 0) are

used to change what is displayed on the Four Digit Display

As mentioned in the table for Mode 3, the display changes the Four Digit Display
depending on sw(l — 0). When both sw(1) and sw(0) are off, dsp(3 — 2) shows the content of the
Instruction Register and dsp (1 ~ 0) shows the contents of the Program Counter. When sw(1) is
off but sw(0) is on, dsp(3 — 2) shows a debug mode and dsp(1 — 0) shows the contents of the
Program Counter. The debug mode is used for only for technical purposes. When sw(l) is on
and sw(0} is off, the display shows the contents of the Accumulator. Finally, when both sw(1}
and sw(0) are on, the display shows the content of memory at the current location. A concise
chart of the display options is shown below:

Current Contents of Memory On " On

Mode 0 (Clear/Reset) uses two buttons: btn(0) to clear the three registers (Accumulator,
Instruction Register, and Program Counter) and bin(2) to reset/initialize the control unit (the
hardare device that synchronizes program execution).

Mode 1 (Memory Address) is used to set the address needed to access memory. Recall
that to access a memory location (either to read from or write to memory), you must first provide
an address. Since memory address are two digits long and given the limited I/O of the Basys2
board, address must be entered one digit at a time. To set the value of the lower (least
significant) digit, set sw(3 — 0) to the binary* representation of the desired number and press
btn(0). The binary value should then appear on the lower four LEDs, 1d(3 — 0). To set the value
of the upper (most significant) digit, set sw(3 — 0) to the binary representation of the digit and
press bin(1). The value should appear on the upper four LEDs, 1d(7 — 4).

For example, to set the address to “407, set the sw(3 — 0) to the binary representation of
four (off, on, off, off in terms of switches, or 0100), and press btn(1). The LEDs on the board
should then change to represent “4” on 1d(7 — 4) and zero on 1d(3 — 0). To set the lower digit, for
example the “2” in “82”, follow the same directions as setting the upper digit except hit bin{0)
instead of btn(1). The LEDs of 1d(3 - 0} should then change and represent the newest number.

? Exact display is delineated in the Technical Manual
* See Technical Manual for specific details on the output
* See page 15 for a brief “How To” on binary

(6]

Mode 2 (Memory Contents) is used to set the contents of memory at the current address
(set using Mode 1). To set the contents of memory at the current address, a method similar to
Mode 1 is used. Since each memory address can hold a signed three digit number, the digits
must be entered sequentially using sw(3 — 0) for the value of each digit and btn(0) - bin(2) to
insert the respective digits. To enter the least significant digit, set sw(3 — 0) to the desired digit
(in binary) and press btn(0). To enter the next digit, set sw(3 — 0) to the binary value of the
second digit and press btn(1). Repeat the same process for the most significant digit, using sw(4)
1o set the sign, and btn(2) to store to memory.

For example, to set a memory location to “948”, set sw(3 — 0) to “8” and press btn(0).
Next, set sw(3 — 0) to “4” and press bin(1). Finally, set sw(3 — 0) to “9” and press btn(2). To
enter the negative number “-948”, the same steps will be taken, but when setting the upper digit,
set sw(4) to On as well as sw(3 — 0) for the digit and press bin(2). This will set both the upper
digit and the sign bit of the three digit number. After the data has been set, it will remain set in
memory unless the user changes the memory at that location, or an instruction is executed to
change the specific location of memory.

Button 3, btn(3), is not used to enter in a number, but rather it is used to increment to the
next memory location. Say for example the memory location “00” is to be set to “104” and the
memory location “017 is to be set to “2057. First, set 00 to “104” using the above method, then
press bin(3) which will increment the memory address to 01 where “205” can be loaded.

Mode 3 (Execute) is for program execution. In Mode 3, all the buttons are used as well
as all the switches. All programs should start at “00” (use Mode 0 to clear the Program Counter
to “0™). The execution of one instruction is accomplished in three phases (or cycles): Fetch,
Increment, and Execute. During the Fetch cycle, the next instruction, whose address 1s in the
Program Counter, is fetched from memory and loaded into the Instruction Register. During the
Increment cycle, the contents of the Program Counter is incremented to point to the address of
the next instruction (to be used at the next Fetch Cycle). For example, “00” increments to “017,
and continues each Increment cycle until “99” where it increments to “00”. During the Execute
cycle, the contents of the Instruction Register is decoded’and carried out by the hardware of the
Basys2 board. This is the most complicated of the three cycles and may require a memory
access to read the contents of memory (a Load instruction) or write to memory (a Store
instruction).

The control unit then cycles back to the fetch state unless the op-code is “9”, halt, where
the control unit does not progress forward and no operations are executed. The halt cycle is
effectively a waiting loop that con only be reset to the initial fetch cycle if the control unit is
reset by going to Mode 0 and pressing bin(2).

To execute a program, two options are available. The first option is to step through each
individual cycle and instruction. This is done by pressing btn(3) while in Mode 3. This use of
stepping between cycles and instructions is to allow for examining the display at every cycle to
see what is being done by the computer. The second option is to run the program, allowing the
computer to execute each instruction automatically. This automates the execution of the
program removing the need for the user to change states manually.

There are two special extended cycles in Mode 3 to handle input/output. These two
immediately follow the execute cycle if the op-code is “0” for input or “5” for output. (Note:
these special cycles are needed to synchronize the slower human reaction-time needed for input

® See Technical Manual to see the decode chart for op-codes.

[7]

and output with the much faster rate that a computer executes a program). Ior input (op-code
“0"}, the program waits for the human to enter a three digit number using a manner similar to
that used in Mode 2 (Memory Contents) to enter a value into memory. Pressing btn(3) will
resume the execution of the program. For output (op-code “5™), the program pauses and displays
the contents of the specified memory address on the display. Pressing btn(3) will also resume
the execution of the program in this special cycle as well.

18]

Running a Program

Understanding the modes may be the hardest part of using the CARDIAC on the Basys2
board. Once there is a firm grasp on each mode and its functions, the next step is to input a
program into memory and then execute it. Below is a step by step process of how to enter and
run the sample program of adding two numbers together.

Steps:
1) Clear the Control Unit and the Registers
i. Go to Mode 0 (sw(7) = Off, sw(6) = Off), and press btn(0) and btn(2) to clear
the registers and the control unit to insure the program starts at the first
memory location, as well as initializes the control unit to the fetch state.

2) Enter Program into Memory
i. Go to the first memory location.

1. Use Mode 1 (sw(7) = Off, sw(6) = On) to set the address to 00.

ir. Enter in the first instruction into memory.

1. This is done by using Mode 2 (sw(7) = On, sw(6) = Off) and setting
the switches to the binary representation of the digit you wish to enter,
then press the corresponding button to load it into memory. Repeat
this process for each digit until memory location “00” has “104”
displayed on the 4-Digit display.

ifi. Press btn(3) to advance to the next memory location

1. Press btn(3) to increment the memory location by one to “01”. From
“017, the memory location will progress to “02”, then “03”, then “047,
all the way up to 99, where it will wrap around to “00” if btn(3) is
pressed again.

iv. Repeat Step 2 and Step 3.

1. Input each instruction into its respective memory address then progress
to the next memory location. Repeat this process until the final
instruction is saved into memory. In the example case, this would be
when memory location “05” contains “003” (since “06” 1s “000” by
default and will be stored to later, it does not need to be set to “0007.)

3} Execute the Program

i. First set the mode to Mode 3 (sw(7) = On, sw(6) = On).

ii. Next, set the display to show the desired output (the easiest to read is when he
display is set to show the Accumulator. This will show how the numbers are
loaded and added together and is done by setting sw(1) to On and sw(0) to
Off).

iii. Run or step through the program.
1. To step through the program, press btn(3) continuously to progress
from one state to the next.
2. To run the program, set sw(5) to On and let the program run on its own
untif it halts.

4) View Results
1. First make sure the program has finished running. To tell if the program is

done, switch the display to view the contents of memory (sw(7) and sw(6) are
turned on). If the display shows the first instruction at location 00, then the
program has finished running (in the case of the addition program, the display
should show “1047). Then turn off the run switch (sw(5)) to insure the
program doesn’t run continue to run

ii. To view the results, go to the location that the sum of A and B was stored
{memory location 06). To do this, go to Mode 1 (sw(7) = Off, sw(6) = On)
and follow the steps to set the address to “06” (six in binary for the switches
would be off, on, on, off, in regards to sw(3 — 0} respectively).

iii. Once the address has been set to “06%, the memory location should no longer
show “07”, but should instead show “5”, the result of adding “002” and “003”.

5) Clear the Control Unit and the Registers
1. Go to Mode 0 (sw(7) = Off, sw(6) = Off) and clear both the control unit and
the registers. This is done to allow for another program to be executed and
prevents unexpected results when entering in a new program.

6) Celebrate!

i. Congratulations! Now that the first program has been successfully ran, there
are many more programs that can be executed to get different results such as
multiplication, division, shifting numbers, a countdown loop; the sky is the
limit!

[10]

Rupning a Program Using Input and Output

Running a program that utilizes the input and output instructions are not much different
than running any other program. The only difference is how the control unit progresses from
state to state as well as how the user interacts with the program. When an input command is
encountered, even during run mode, the control unit goes into a special input state. The control
unit will remain in this state until the user presses btn(3) showing the computer that the data has
been input and the user is ready to continue with calculations. However, this can become tricky
while stepping through the program and not using the run mode. When the display switches to
showing just “0” the user has entered the input mode. The number should be entered before
pressing bin(3) and progressing to the next instruction in the program. It may be hard to tell, but
knowing what instruction to expect will make it easier to know when an input mode has been
reached.

Output is similar to input except the user does not enter any data into memory. Instead,
the output instruction exists solely fo allow the user to-see a given location in memory that may
be a result of some calculation. This can be especially helpful when writing a program to see if
the calculations are progressing correctly, or if there is a bug somewhere. Much like input mode,
the control unit will stop at this state and waits for the user to press btn(3) to advance to the next
state.

Below is an example input/output addition program step by step instructions on how it is
run.

1} Clear control unit and the registers

2) Enter Program into Memory
i. Go to the first memory location.
1. Enter in the first instruction into memory.
iii. Press btn(3) to advance to the next memory location
iv. Repeat Step 2 and Step 3, entering in each instruction of the program into
memory.

[11]

NOTE: Up to this point, the directions have been nearly the same as if using the addition
program. The main differences come in the next step, Execute the Program, where there will be
more in depth instructions for input and output.

3) Execute the Program
1. Set the mode to Mode 3 (sw(7) = On, sw(6) = On).
ii. Setthe display to show the desired output.
iii. Run or step through the program
1. While running or stepping through the program, the program will hakt
at each input/output instruction that is encounter and will wait for the
user to advance to the next state.
1i. For an input instruction:
1. Insert the desired instruction/ data using sw(4 — 0) as if
entering an instruction into memory normally.
2. Once input has been entered, switch the display switches to the
correct setting to show the desired output on the display.
3. Press btn(3) to advance to the next state and continue on with
the execution of the program
iii. For an output instruction:
1. View the display and see the contents of memory at the address
in the instruction.
2. Once the display has been viewed, press btn(3) to advance to
the next state and continue on with the execution of the
program.

NOTE: From this point on, viewing results of a program and clearing the device are the same as
other programs.

4} View Results
i. Make sure the program has finished running.
il. View results of the program at the given memory locations within the
program. In the case of the example program for input and output, go to
locations “07 — 09 to view the input data, and the resulting sum.

5) Clear the Control Unit and the Registers

(12}

Appendix

Sample Programs:

Below are some examples of sample programs that can be loaded and ran using the
CARDIAC implemented on the Basys2 board. The programs are as follows and can be
manipulated or combined together to make more advanced or powerful programs: multiplication,
division, shifting a digit, and countdown summation program.

ram:

More complicated programs can be used that combine some or all of the op-codes into a
single program to perform complex operations. Below is an example of such a program that
takes input from the switches on the Basys2 board, calculates the square of the given number that
was input, displays the result of the squaring process on the display, then terminates. The special
quality of this program is that it not only utilizes all but one of the op-codes, but can be run over
and over again without ever having to change memory. The data that is given as input will
overwrite any previous data stored in the same location in memory allowing for continuous runs
of the program using only Mode 3 to execute, and Mode 0 to clear the control.

Number Squaring Program (Squares a number given as input

7 e

AT

! LEGRREEL
02 216 Add 16 (Number) to the Accumulator

it i £, ; &
04 616 Store the contents of the Accumulator to 16 (Number)

06 718 Subtract 18 (Two) from the Acumatr

12 806 Repeat the Squaring Lo

& (1)
Pro

displ

ram Co

a3

1t_er to 00

14 900 Halt the program and set the

16 000 Number

18 002 Two

How to Read Binary Numbers:

Binary is used in Computer Science as a way to represent numbers in the Base 2 format.
What that means, it that each digit has only two options, a 0 or a 1. Think about the normal
counting system. It is called Base 10. That means there are 10 possible options for each digit in
anumber: 0,1,2,3,4,5,6,7, 8, or9. To represent the number 1, for example, the first digit of
the number is simply 1. Done! If the number 14 was desired, however, then simply put 1 for the
first digit, followed by a 4. How is this possible? Well, take the number 14 again. The farthest
digit to the right is the ones place, and the next digit to the left is the tens place. How this
terminology came to be is from simple multiplication, addition, and exponents. The farthest
digit to the right in Base 10 is 100, or 1. The next digit is 101, or 10, then 102, or 100, and so on
and so forth. We then take each digit, multiply it by the power of 10 that it is associated with
and add each multiplication step together:

14 : 1(10Y) + 4(10% = 1(10) + 4(1) = 10 + 4 = 14
143 1 1(10%) + 4(10") + 3(10%) = 1(100) + 4(10) + 3(1) = 100 + 40 + 3 = 143

The same system to calculate a number in Base 10, is used to calculate a number in Base
2, binary. One main difference between Base 10 and binary is the base that will be multiplied to
each digit. Base 10 had 10 raised to the N power (10™) where N is the digit starting at 0. Binary
uses its base of 2 raised to the N power (2") starting at 0. This means that the bases for binary as
are follows:

Bases: 20, 21, 22, 23, 24, . oN
Values: 1, 2,4, 8, 16,32, 64 ...

Knowing how the bases work and the values associated with them (by calculating the
value of the base to the N power), any binary string can then be converted into a more familiar
format of Base 10. Below are examples of each binary string from 0 — 9 and how they are
calculated to be displayed in Base 10.

: 0000 = 0(2%) + 0(2%) + 02" + 02%) = 0(8) + 0(4) + 0(2) + 0(1) =0+ 0+ 0+ 0=0
10001 =02} + 025 + 02N + 12N =08) + 0 + 02) + (N =0+ 0+ 0+ 1 =1
0010 =002 + 02%) + 12H + 02%) = 0(8) + 0(4) + 1(2) + O() =0+ 0+ 2 + 0 =2
0011 =02 + 02 +12H + 1Y) =08) + 0(4) + 1() + 1(1)=0+0+2+1=3
10100 = 02" + 129 + 02H + 02N = 0(®) + 1(A) + 0R) + A1) =0+ 4 +0+0=4
0101 =02 + 102H) + 02 + 12D =0@®) + 1)+ 0Q) + 1(1)=0+4+0+1=5
0110 =002 + 125+ 12H + 02D =08) + 1(#) + 1(2) + () =0+ 4 +2+0=6
0111 =02 + 129+ 12H + 1Y =0@®) + 1) + 1)+ 1(1) =0+ 4+2+1=7
(1000 = 1(2) + 02 + 02N + 02D = 1) + 0(4) + K + 0(1) =8+ 0+ 0+ 0 =8
1001 =123 + 023 + 02H + 12D = 1®) + 0 @) + 02 + (1) =8+0+0+1=9

O Qe = N LA s L DD e D

Binary is as simple as that! Start with a binary string at the left, apply the powers of 2
starting with 2° to each digit, multiply each digit by the power of 2, and then add it all together to
get a string in Base 10.

[16]

CARDIAC: Basys2 Edition

Technical Manual

Eric W. Mann
5/10/2014

Understand the underlying architecture of the CARDIAC that was implemented on the Basys2
board ranging from the code used (in VHDL) to the diagrams that describe the organization of
each individual components utilized. Also, see the technical decisions that went into to creating
a successful implementation of the CARDIAC.

Table of Contents:

CARDIAC (Overview of Design)
Top Diagram
Diagram

Memory
Diagram

Datapath
Operation Codes (op-codes)
Decoding the Operation Codes (op-codes)
Diagram

Control Unit
Diagram

Input / Qutput

Source Code

[1]

10

12

13

13

14

15

CARDIAC (Overview of Design)

The CARDIAC was implemented on the Basys2 FPGA board. The process
was not without many complications along the way including the interface, the
clock speed, as well as simply connecting components together.

This manual will demonstrate each of the CARDIAC's components and the
programming behind each. A diagram will be provided to show how everything
interfaces. At the end of the manual will be a glossary of all the source code
utilized in the project. A brief description including the challanges faced, the
design desicions made, and a general overview of operations will preface each
component to give a concise understanding of what each component does, and why
it was done the way it was.

Below is the top diagram for the CARDIAC with how it interfaces with the
Basys?2 board as well as the CARDIAC diagram of how each component in it is
connected in a general manner. Each subsequent section will dive deeper into the
implementation.

Enjoy!

[2]

Top Diagram

Coviee-dlen) L

Jv?%,i:p“__.;[wtg} 1 LN
“*’(:;3::1}-—* . TR B el RIS -
'»9"(&,::4}“‘“""”"”' f.m,'}gﬁz T 4&?;«5 w;«kb‘-j ri&f@v.g PLoy) -
Y ;’:‘;f}—-‘-% Fronias s PRL “f‘“'“"_ o»-«r»E k- 'i'm gmmv**".,,bg ff'iiAK"i o

ﬁ{ Pad
L

o

Mr ﬁpc“ ..a.‘.

. ;a{u?

(e foud O 1 Heteeblydnfiest ,‘%‘}&Ax«mn@'

.,_..z;%w_cuw.; bord 1 w(asr-w M.,_w,‘_;_
!?'J'%ft{'f;’ 1'0‘;”;..,‘23.‘. i Om"‘* $x r«a&

[XV] {u}
w-l"‘ﬁ

. hﬁ.:/fﬁ

.

a-hf

.3 «\2.'
o é EN

g*h(&)f .rs.: R T

ettt '

- sw{}zf w2y A ‘"/7«01 & W.G.’:?.}é RO WU SO OO BRI - T N
O 0% T O

..mg?}:‘,}. 1

rﬁﬁ:ﬁaﬁi

LV :

’ Cocdine — Firel —op |

3]

Diagram

(4]

Memory

The memory is the first component of the CARDIAC implemented. It was completed
first because of the simplicity to it, as well as to make certain a program could be stored and
implemented later on. This allowed for data to be put into memory and tested throughout the
entire process. When implementing the memory, there needed to be an interface with the board
to actually input data into memory. The early stages of the interface were born and became a
prototype to what would eventually become the final product.

The memory itself consists of a few internal components: four stacks for memory (one
for each digit of a three digit number, and a final stack to store the sign), a memory address
register, and clock pulses (which are used to synchronize button presses on the Basys2 board
with the internal clock). The four memory stacks are arrays of arrays in the simplest sense. Each’
stack for the digit is an array of size 128, that can store 4 digit binary number, or a one'digit BCD
number. There are 128 slots to allow for easier compilation (using a power of 2). The stacks are-
limited with internal programming to only allow for slots 0 — 99 to be utilized, however, to
simulate the memory of the CARDIAC. The memory address register holds the current memory
address and outputs it to the memory stacks. This is used during the input state or the input
modes (Modes I and 2) to insure the memory stays fixed to one location, advancing only when
the user wants it to. The final items utilized are the clock pulses. These small structures simply
insure the when a button is pressed on the Basys2 board, the puise that results from it is clean
(does not bounce at the beginning) and results in a single press. Without these clock pulses
implemented, pressing the load buttons would continually load data into memory instead of
loading data once. Also, the increment button for the memory address register would not be one
solid clean increment to the next memory address, but rather, it would continually increment
until the button was released.

These two issues were the first challenges faced when writing the memory. The second
challenge came when connecting the memory circuit to the datapath and similarly the control
unit. The datapath outputs an address to memory which is used during the operation of the
CARDIAC. The challenge was to take another address as input, but correctly choose the address
to utilize (the address from the datapath, or the address from the memory address register). This
was solved by using a 2-1 mux to select the correct address depending on whether or not the
computer is set to state Mode 1 or 2. Now, the only time the address from the datapath is used is
during Mode 0 and Mode 3 where execution occurs. Interfacing with the control unit was not as
difficult as predicted. The challenge was to allow data to be loaded into data while in Mode 3
but only if the control unit is in an input state. The solution was to or the memory load pins with
a inp_mode signal that was output from the control unit. This allowed for data to still be written
to memory while in Mode 3 with the correct address coming from the datapath.

At this point, the Memory circuit is complete for operation but can still use modifications.
Firstly, there needs to be a “clear” operation that allows for the memory address register and the
contents of memory be cleared so a new program to be input. The difficulty with this comes
from the device. The many methods to implement clear that | have tried have yielded results that
utilize more resources than the Basys2 board can allocate. In the end, this was cut from the
design but can be implemented at a later point in time.

[5]

Diagram

Datapath

The datapath is the component where all calculations are gated and performed. It
involved the most difficult aspects of implementing the CARDIAC, but, rightfully so, it is the
most important (arguably). In order to have the correct operations performed, an interface inside
the datapath had to be created in order to have the correct data be gated to the correct component
to perform the correct operation. It was as confusing as it sounds. The internal interface was
accomplished using a decode circuit to convert an operation code and memory address in an
instruction into workable signals.

Each component in the CARDIAC has specialized units to perform given operations, but
there are some units (such as clock pulse) are used in some, or all of the main components of the
CARDIAC. Among the components used for the datapath are the following: addition,
subtraction, shifting, the Accumulator, the Instruction Register, the Program Counter, a decode
circuit, and finally clock pulses. The addition circuit simply adds the content of the Accumulator
to the contents of memory at the location of memory in the Instruction Register (which holds the
current instruction). The current memory location will be referred to as the effective address
(EA). Subtraction is much like addition, only subtracts the contents of the EA from the
Accumulator. Shifting will shift the contents of the Accumulator to the right one, or to the left
one depending on the EA (shifting is explained further below). The Program Counter holds the
location of the next location of memory, while the Accumulator is simply storage for operations
(almost as a running tally). The clock pulses used in this component are pulses that synchronize
a load pin as well as the clock so the registers (instruction, program, and accumulator registers)
only load once and cleanly.

The main difficulties encountered were with the clock, registers, and load pins. The
complicated structure that makes up the load pin for the Program Counter was constructed to
account for jumping, incrementing, and halting (jump on halt). Until the correct load pin was
constructed, the program counter only incremented but did nothing else. Also, the specialized
clock pulse 2 was used not used here because it was causing a delay in the load of the Program
Counter. It would attempt to load after the load was asserted and as such, nothing would be put
into it. Another challenge was to have the instruction be decoded in a manner that the data from
memory would be gated to the correct location. The decode circuit (delineated below as well as
each operation code in detail) kept changing until the final result was constructed. Once the
challenges were rectified, the datapath functioned perfectly.

[7]

Operation Codes (op-codes)

Operation Codes (op-codes for short) are the commands in each instruction that are

decoded to instruct the CARDIAC which when to load or store memory, if special states in the
control unit need to be entered, what arithmetic to do, etc. The instructions are decoded by the
decode (decode final) circuit implemented in the datapath (datapath_final). Below are the
detailed representations of the functions for each op-code:

Op_codes:

0 —

Input
Load data from external switches and store into memory. This op-code also puts the
control unit into a special state that halts execution temporarily allowing the user fo enter

data into memory.

Clear and Add (Load): ACC < 0, ACC — ACC +M][IR]

Clears the Accumulator then adds the content from memory to the Accumulator. Asitis
implemented, the Basys2 implementation simply loads the data into memory instead of
clearing and adding. This is done to allow for less calculations as well as allowing for
more efficient implantation of a four to one mux utilized in the design.

Add: ACC «— ACC + M[IR]
Adds the content of memory at the address in the instruction to the Accumulator

Jump on Minus: If ACC >0, PC < IR
Jumps to the location of memory in the instruction if the Accumulator is negative

Shift
Shifts the Accumulator one digit to the left or right. The CARDIAC allows for the

shifting X to the left and then Y to the right. Due to difficulty in implanting multiple
implementations, only a single shift is allowed. Putting an instruction other than “007,
“017, or “10” will yield unpredicted results.

The following are the delineations for shifting using the rest of the instruction:
“00" — No shifting, “01” — Shift right, “10” ~ Shift left, “11” — No shifting

Output
Displays the content of memory at the given memory address in the instruction. This op-

code also puts the control unit into a special state that halts execution temporarily for the
data to be displayed.

Store: M[IR] «~ ACC
Stores the content of the Accumulator to the specified memory address in the instruction,
The Accumulator is not cleared after a store command.

8]

7 — Subtract: ACC «— ACC - M[IR]
Subtracts the content of memory at the address in the instruction from the Accumulator.

8 — Jump: PC IR
Unconditionally jumps to the location of memory in the instruction.

9 — Halt: PC «~ IR
The halt command stops execution of a program. Also, the halt command performs a
jump to the location of memory in the instruction.

9]

Decoding the Operation Codes (op-codes)

The previous section discussed the op-codes in larger detail on their functions as well as
descriptions. Each op-code has its own function, but can only operate when it is decoded by the
CARDIAC to perform specific operations and guide the flow of data from registers and memory
to their correct destinations in order to perform the operations in the instruction. In order to do
so, the decoded instruction results in a sequence of nine outputs that range from a select pin for a
mux, to the load pin of the Accumulator, Below is the breakdown of how each instruction is
decoded as well as the description for each output from the decode circuit does.

Note: 1s and Us are commonly used to represent On and Qff respectively.

outp: sends the control unit into a special output state which halts execution to allow for the user
to see the current contents of memory at a given location.

inp: sends the control unit into a special input state which halts execution to allow for the user to
load data into memory.

jump: allows for the Program Counter to be loaded in the Execute state to allow for an
unconditional jump command to be executed.

halt: sends the control unit into the halt state which stops all execution as well as allows the
Program Counter to be loaded with the given memory address to perform a jump command.

neg: used to check whether the sign of the Accumulator is 1, negative, or 0, positive. On
negative, the Program Counter will be loaded with a given memory address to jump to.

acc_load: allows for the Accumulator to be loaded.

[10]

mem_Jload: allows for memory to be written oo during the Execution state.

m1: a two bit select for the Accumulator which chooses to either shift the Accumulator, perform
an addition, perform a subtraction, or load the Accumulator. The mux select ranges from “00” to
“11” in binary to perform the previous operations respectively.

m0: the single bit select to send either the contents of the Program Counter (on 0) or the
Instruction Register (on 1) out to be the address in for memory, from the datapath.

[11]

ol Bir (5

[12]

Control Unit

The control unit is the engine behind the machine. It moves between different cycles
(Fetch, Increment, Execute) until a halt pin from the decode circuit in the datapath 1s asserted,
where the control unit halts and does nothing until the user restarts the machine. This component
is highly important. Without this component, the computer could not run.

Each cycle in the control unit has specific functions. The Fetch cycle grabs data from
memory and stores it in the Instruction Register. The Increment cycle moves the Program
Counter up by one so the next instruction could be fetched. Finally, the Execute cycle is where
all the calculations are performed. The control unit then cycles back to Fetch after Execute and
repeats until the end of the program is reached. Special states are included for Input and Output
to allow execution to halt, and allow for the user to either input data into memory or view a given
location in memory.

There were very view challenges faced with the control unit. It was simple enough to
transition between states. The control unit outputs pins for each state which are then utilized by
the other main components to tell what functions need to be carried out. This is not the job of
the control unit. So, simply enough, the control unit gives out the information needed, and it is
up to the other components to utilize it correctly.

Below is the diagram for the control unit:

Diagram:

Repeat untl reset

[13]

Input / Output

Input and Output were the last feature to be implemented for the CARDIAC. It was
thought to be the most difficult (which is why it was put off until the end) but turned out be one
of the simplest. In a general sense, the purpose of Input and Output is to allow for a user to input
data into memory while a program is executing or to read a memory location while a program is
executing. These are used to allow for greater usability within programs as well as to debug
program by seeing the contents of memory locations to see if the correct result is being saved at
any specific moment in a program. They are also used to alleviate the need to pause execution to
change memory or view memory.

There is no overall diagram or specific code for Input and Output. These functions were
implemented by making small changes to each of the main components of the CARDIAC. In
the Memory, pins were added to allow for data to be input into memory outside of Mode 1 or 2
(specifically Mode 3: execution). The datapath was where most of the modifications came. The
decode circuit had to be altered to allow for the Input and Output operations to be decoded.
Also, the datapath had to output of some of the decoded results to the control unit to allow for
specific states to be entered. The control unit then outputs different pins when the Input or
Output cycle is reached. The new pins tell the datapath if a temporary jump to view memory is
needed, as well as to tell the Memory circuit to load data into that given location in the
instruction. Once these fixes were implemented, the Input and Output was finished.

[14]

Source Code

add_cardiac:

-— Adds the Accumulator and datapath --
-- add cardiac.vhd --

library IEEE;
use IEEE.std logic _1164.all;

entity add cardiac is
port
acc_in : in std_logic_vector (12 downto 0);
data in : in std logic vector (12 downto 0};
add out : out std legic vector (12 downto 0}
Y

end add cardiac;

architecture add cardiac of add cardiac is
component tens complimentl3 is
port {
a : in std logic vector(lZ2 deownto 0);
s : out std logic_vector(lZ downtoc 0)
) s

end compcnent;

component bcd adder34 is
port
a : in std logic_vecter {12 downto 0};
b : in std logic_vector {12 downto 0};
s : out std logic_vector {13 downto 0)
)

end component;

signal a, b, acc _comp, data comp, result comp:
std logic _vector (12 downto 0);

signal result: std logic vector (13 downto 0);
begin

process (a, b, acc _in, data in, acc_comp, data_comp)

begin
if (acc in(12) = '1") then
a <= acc_comp;
else
a <= acc_in;
end if;

if (data in(l12) = '1l') then

[15]

b <= data comp;
else
b <= data in;
end if;
end process;

process (result, result comp)

begin

if (result(l3 downto 12) = "00") then
add_out <= result(l2 downto 0};

elsif (resuli (13 downte 12) = "01l"} then
add_out <= result comp;

@elsif {result(l3 downto 12) = "1i0") then
add _out <= result(lZ downto 0);

else
add out <= result comp;

end if;

end process;

T1l: tens _complimentl3
port map |

a =» acc_in,

S => acc_comp

)i

TZ2: tens complimentl3
port map (

a => data in,

s => data_ comp

)

T73: tens complimentl3
port map |

a =» result{l?2 downto {),
s => result comp

Vi

Bl: bcd adder3d4

port map(
a => a,
b => b,

s =» result

Y

end add cardiac;

[16]

bed_adder4:

-— 4 digit bcd addition --
-—- bcd adderd.vhd --

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity bcd adder4 is
port
a : in std logic vector (3 downto 0};
b : in std logic vector (3 downto 0};
c_in : in std logic:
c_out : out std logic;
s : out std logic vector (3 downto o)
Y i

end bcd adderd;

architecture bcd adder4d of bcd adderd is
begin
process{a, b, c_in)
variable temp: std logic_vector (4 downto 0);

begin
temp := ('C' & a} + ('0'" & b) + ('0' & c_in};
if (temp > 9) then
temp := temp + 6;
end if;

g <= temp{3 downto 0);
c_out <= temp{d);
end process;
end bcd adderd;

[17]

bed _adder34:

-— Adds two signed 3 digit BCD numbers --
-— bcd _adder34.vhd --

library IEEE;
use IEEE.std logic 11e4.all;
use IEEE.std logic unsigned.all;

entity bcd adder34 is
port
a : in std logic vector (12 downto 0);
b+ in std logic vector(lZ2 downto 0);
s : out std logic vector (13 downto 0}
) :

end bcd adder34;

architecture bcd adder3d4 of bced adder34d is
component bcd adderd is
port
a : in std logic vector{3 downto 0);
b : in std legic vector (3 downto 0);
¢ in : in std logic;
c out : out std logic;
s : out std logic vector (3 downto 0)
Y i

end component;

signal c0 _out, ¢l out, c2Z out: std logic;
signal s0, sl, s2: std logic_vector (3 downto 0);
signal carry, a sign, b sign, cf: std logic vector{l downto 0);
begin
a_sign <= "0" & a(l2):;
b sign <= "0" & b(1l2);
cf <= "0" & cZ out;
carry <= a sign + b sign + cf;
s <= carry & s2 & sl & s0;

BO: bcd adderd
port map (
a => a(3 downtc 0},
b => b(3 downto G},
in => 0",

out => c¢0 out,

=> 50

w00

[18]

Bl: bcd adderd
pert map |
a => a({l downto 4),
L => b{7 downto 4},
_in => c0 out,
_out => ¢l out,

=> sl

~— n O 0

.
r

B2: bcd adder4
port map (
a => a(ll downto 8),
b => p(11l downtc 8),
c _in => cl out,
c out => cZ_out,
s =>» 52
Y i
end bcd adder34;

[19]

cardiac_final:

-— VHDL implementation of the CARDIAC Computer for BasysZ FPGA
Board -
-~ cardiac_final.vhd --

library IEEE;
use IEEE.std logic_1164.all;

entity cardiac_final is
port {
mode0 : in std logic;
model : in std logic;
mode? : in std logic;
mode3 : in std logic;
loadl : in std logic;
loadl : in std logic;
loadZ : in std logicy;
go : in std logic;
step : in std logic;
mem incr : in std_logic;
clk : in std_legic;
addr _in : in std logic_vector (7 downto 0);
data in : in std logic vector(1lZ downtc 0);
acc_out : out std logic vector(lZ downto 0);
ir : out std logic vector(7 downto 0);
pc : out std logic vector(7 downto 0);
debug : out std logic vector (7 downto 0);
output mode : out std _logic;
input mode : out std logic;
addr out : out std logic vector{7 downto 0);
data out : out std logic vector(1lZ downto 0}
)i
end cardiac final;

architecture cardiac_final of cardiac final is
component memory_final is
port
load0 : in std _logicy
loadl : in std logic;
load2 : in std logic;
model : in std logic;
mode?2 : in std logic;
inp mode : in std logic;
clk : in std logic;
clr : in std logic;
incr : in std logic;

write mem : in std_logic;

data in : in std logic vector (12 downto C);
addr_in : in std logic vector (7 downto ();
addr_in datapath : in std_logic vectox (7 downto 0};
addr_out : out std logic_vector{(7 downto 0);
data out : out std logic vector{l2 downto 0)
)
end component;
component datapath final is
port |
clk : in std logic;
fetch : in std logic;
increment : in std legic;
execute : in std logic;
clear : in std logic;
mode3 : in std logic;
output : in std logic;
input : in std logic;
data_in : in std _logic vector(lz downto 0):
acc_out : out std logic vector(l2 downto 0);
addr out : out std logic vector (7 downto 0);
ir : out std logic vector (7 downto 0);
pc : out std leogic vector (7 downte 0);
debug : out std logic vector (7 downto 0);
inp out : out std logic;
outp out : out std logic;
mem load : out std logic;
halt : out std logic
)i
end component;
component control_ final is
port |
clk : in std logic;
clr : in std logic;
stop : in std logic;
go : in std logic;
step : in std logic;
inp in : in std_logic;
outp in : in std logic;
fetch : out std logic;
incr : cut std logic;
exe : out std logic;
inp out : out std logic;
outp out : out std logic
Vi

end component;

[21]

component muxlg is

generic{N:integer :=4);

port (

a : in std logic vector(N-1 downto 0);

b : in std logic vector (N-1 downto 0);

s : in std logic;

y : out std legic vector (N-1 downto O)

)
end component;
signal run, stop, fetch, increment, execute, write mem,
mem load: std logic;

-— Signal pins
signal clear datapath, clear memory, clear control: std_logic;

-— Clear CARDIAC (Memcry Clear does not work)
signal addr out datapath: std logic vector (7 downto 0};

~- Address cut form Datapath

signal data out mem, accum out, data mux out:
std logic vector{lz downtoc 0);

-- Data input mux
signal inp, outp: std lecgicy

-— I0 state controls
signal data sel, load mem: std logic;

~- data input pins

signal output state, input state: std logic;

-— IC States from control unit

begin
write mem <= execute and mem load and mode3;
acc_out <= accum out;
data out <= data out mem;
clear datapath <= load(C and mode0;
clear memory <= loadl and mode0;
clear control <= loadZ and mode0;
run <= go and mode3;
data sel <= modeZ or input_state;
load mem <= write mem;
cutput mode <= cutput state;
input mode <= input_ state;
~-state out <= fetch & increment & execute;

MemoryCardiac: memory final
port map |

loadd => load?,

loadl => 1loadl,

lecad? => lead?2,

model => model,

mode? => modsZ,

[22]

inp mode => input state,

clk => clk,

clr => clear memory,

incr => mem incr,

write mem => load mem,

data in => data mux_out,

addr in => addr in,

addr in datapath => addr out datapath,
addr out => addr out,

data out => data_out mem

)

Datapath: datapath_final
port map ()

clk => clk,

fetch => fetch,
incrament => increment,
execute => execute,
mode3 => model,

output => cutput state,
input => input state,
clear => clear datapath,
data_ in => data_out_mem,
acc_out => accum_out,
addr out => addr_ out datapath,
ir =» ir,

pc => pc,

debug => debug,

inp out => inp,

outp out => outp,

mem load => mem locad,
halt => stop

) ;

Data Mux: muxZg
generic map (N=>13)

port map |

a => accum_out,

b => data in,

s => data_ sel,

y => data mux_out
) .

’

CARDIAC Comp: control final
port map (

clk => clk,

clrx => clear control,

[23]

stop =>» stop,

go => run,

step => step,

inp in => inp,

outp in => outp,

fetch => fetch,

incr => increment,

exe => execute,

inp _out => input state,
cutp out => output state
)i

end cardiac final;

[24]

cardiac_final top:

-- Top file for the CARDIAC Computer for the BasysZ FPGA Board -

-— cardiac final top.vhd --

library IEEE;
use IEEE.std logic 1164.all;

entity cardiac final top is
port |
sw : in std_logic vector (7 downto 0);
btn : in std logic_vector (3 downto 0);
mclk @ in std logic;
1d : out std logic vector (7 downto 0}; .
a_to g : out std logic vector (6 downto 0);
an : out std logic vector{3 downto C};
dp : out std_leogic
Y

end cardiac_final top;

architecture cardiac final top of cardiac final_top is
component cardiac final is
port {
mode0 : in std logic;
model : in std logicy
modeZ : in std logic;
mode3 : in std logic;
load0 : in std logic;
loadl : in std logic;
load2 : in std logic;
go : 1in std logic;
step : in std logic;
mem incr : in std logic;
clk : in std logic;
addr_in : in std logic vector (7 downto 0);
data_in : in std logic vector (12 downto 0);
acc_cut : ocut std logic vector (12 downto 0);
ir : out std logic vector{7 downto 0);
pc 1 out std logic vector{7 downto 0);
debug : out std logic vector (7 dewnte 0);
output mode : out std logic;
input mode : out std logic;
addr out : out std logic vector (7 downto 0);
data out : out std logic vecter (12 downto 0)
)i

end component;

[25]

component x7segb is
port (
x : in std logic vector (15 downto 0);
clk : in std logic;
clr : in std logic;
a_to g : out std logic vecter (6 downtoc 0);
an : out std logic vector{3 dewnto 0);
dp : out std logic
)i
end component;
component clock pulse is
port
inp : in std logic:
cclk : in std logic;
clr : in std logicy
cutp : out std logic
)7
end component;
component mux2g is
generic{N:integer :=4);
port {
a : in std logic vector (N-1 downto 0);
D in std logic vector{N-1 downto 0);
s : in std logic;
Y out std logic vector(N-1 downto 0)
) ;
end component;
component clkdiv is
port
mclk: in std logic;
clr: in std_logicy
clk25: out std logicy
clk190: out std logic;
clk3: out std logic
) :
end component;
component mux4g 1is
generic (N:integer :=4);
port (
a : in std logic vector (N-1 downto C};
b : in std logic vector(N-1 downto 0};
: in std logic vector{N-1 downto 0);
in std logic vector (N-1 downto 0);
in std logic vector(l downto 0);
out std legic vector(N-1 downto 0)

w o0

&~

)i

end component;

[26]

signal go pulse, modeC, model, modeZ, mode3, model 2: std logic;
-- modes
signal addr in: std logic vector (7 downto 0};
-= gddress input from IO
signal data_in, data out, acc _out: std logic vector(lZ downto
0):
—-— Transitional pins from components
signal ir, pc, debug: std logic vector (7 downto 0);
-- cardiac outputs for display
signal dsp sel: std logic vector (1l downto 0);
-- Display Select
signal dsp0, dspl, dsp2, dsp3: std logic vector (15 downto 0);
-- Display options
signal dsp, x: std logic vector (15 downto 0);
-— Display output for 7 segment display
signal mode3a, run, clk3: std logic:
-— run pin for fast execution
signal step: std logic;
-- single step for execution
signal outp, inp: std logicy
-- output/input pin to display data contents.

begin

data in <= sw{4 downto 0) & sw(3 downtc 0) & sw(3 downtc
Q)

addr _in <= sw(3 downto 0) & sw{3 downto 0};

model <= not swi({7) and not swi{bt);

model <= not sw(7) and swi{6);

modeZz <= sw(7} and not swi{é);

mode3 <= sw(7) and sw(6);

model 2 <= model or modeZ;

dsp_sel <= sw(l downto 0) or (outp & outp) or (inp & inp);
dsp0 <= ir & pc;

dspl <= debug & pc;

dsp2 <= "000" & acc out;

dsp3 <= "000" & data out;

model3a <= sw(7) and sw({o) and sw(5};
run <= ¢lk3 and mcode3a:
step <= run or btn(3};

RunPulse: clkdiwv
port map {

mclk => mclk,
clr => '07,

[27)

clk3 => clk3
1

DisplayMux: muxdg
generic map (N => 16)

port map

a => dsp0,

b =>» dspil,

c => dsp2,

d => dsp3,

s => dsp sel,
z =>» dsp

)

DisplayMux2: mux2g
generic map (N => 16)

port map |

a =>» dsp,

b => dsp3,

s => model 2,

y => x
)

ClockPulseGo: clock pulse
port map (

inp => step,

cclk => mclk,

clr => 'Q',

outp => go pulse

)i

Cardiac LowLevel: cardiac_final
port map {

mode(=> model,
model => model,
mode2 => mode?Z,
mode3 => mode3,
load => btn (0},
loadl => btn(l),
load? => btn(2},

go => go pulse,
step => btn(3),

mem incr => btn (3},
clk => mclk,
addr_in => addr in,
data in => data in,
acc_out => acc out,

[28]

ir => ir,

pc => pc,

debug => debug,
output mode => outp,
input mode => inp,
addr_out => 1id,

data out => data out
):

Display: x7segb
port map(

end cardiac final top:

[29]

clkdiv:

~-— Divides clock into three different speeds for expanded
executicn -
~— ¢clkdiv.vhd -~

library IEEE;:
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity clkdiv is
port |
mclk: in std logic:
clr: in std logic;
clk25: out std logic;
clkl190: out std logic;
clk3: out std logic
)i

end clkdiv;

architecture clkdiv of clkdiv is
signal g: std leogic vector (23 downto 0);
begin
process (mclk, clr)
begin
if ¢lr = '1l' then
g <= X"000000";
elsif mclk'event and mclk = 'l' then
g <= q + 1;
end 1if;
end process;
clk2b <= g(0};
clk190 <= g(17}:
clk3 <= g(23);
end clkdiv;

[30]

clock pulse:

~~ Example 48: Clock Pulse --
-~ clock pulse.vhd --

library IEEE;

use IEEE.std logic_1l64.all;

entity clock pulse is
port (
inp : in std logic;
cclk : in std logicy
clr : in std logic;
cutp : out std logic
)i

end clock pulse;

architecture clock pulse of clock pulse is
signal delayl, delay2, delay3: std logic;
begin
process (cclk, cir)
begin
if clr = '1" then
delayl <= '0';
delay2 <= '0';
delay3 <= "0°%;
elsif cclk'event and cclk = '1' then
delayl <= inp;
delay2 <= delayl;
delay3 <= delayZ;
end if;
end process;
outp <= delayl and delayZ and not delay3;
end clock pulse;

[31}

clock pulse2:

~~ Synchronizes cleck and button --
-- clock pulseZ.vhd --

library IEEE;
use IEEE.std logic 1l64.all;

entity clock pulseZ is
port (
inp : in std logic;
cclk @ in std leogic;
clr : in std logic;
outpC : out std logic:
cutpl : out std logic
)

end clock pulseZ;
architecture clock pulseZ of clock pulse2 is

signal delayl, delay2, delay3, delavy4, delayb: std logic;
begin
process (cclk, clr)
begin
if clr = '1' then
delayl <= '0";
delayz <= '0';
delay3 <= '0';
delayd <= '0';
delayb <= '0';
elsif (ccik'event and cclk = '"1') then
delayl <= inp;
delay?2 <= delayl;
delay3 <= delay2:
delayd <= delay3;
delay5 <= delayéd:;
end if:;
end process;

outp0 <= delayl and delay? and not delay5;
outpl <= delay?2 and delay3 and not delayéd:;

end clock pulseZ;

[32]

control_final:

—-— Control unit for the CARDIAC --
-- control final.vhd --

library IEEE;
use IEEE.std logic 1l64.all;

entity control final is
port |
clk : in std logigc;
clr : in std_logic;
steop : in std logic;
go : in std logic;
step : in std logic;
inp in : in std logic;
outp in : in std leogic;
fetch : out std logic;
incr : out std leogic;
exe : out std legic;
inp out : out std logic;
cutp cut : out std logic
):

end control final;
architecture control final of control_final is

type state type is {start, fetch state, incr state, exe state,

input state, output_state, haltf); --need input state, and
output_state which will go to fetch on step = '1°
signal present state, next state: state type;
begin
sreg: procesgs (clk, clr)
begin
if clr = '1' then
present state <= start;
elsif clk'event and clk = 'l' then
present state <= next state;
end 1if;

end process;

Cl: process (present state, go, stop, inp_in, outp_in,
step)
begin
case present state is
when start =>
if go = '"1"' then

[33]

next state <=
else

next state <=
end 1f;

when fetch state =>

if go = '1l' then
next state <=
else
next state <=
end if;

when incr_state =>
if go = '1l' then

. next state <=
else

next state <=
end 1f;

when exe state =>

fetch state;

start;

incr state;

fetch state;

exe state;

incr_state;

if go = '1l'" and inp_in = '1' then
next state <= input state;

elsif go = '1' and outp in = '1' then
next state <= output_state;

elsif go = '1' and stop = '0' then
next state <= fetch_ state;

elsif go = '1' and stop = 'l' then

next state <=
else

next state <=
end if;

when input state =>

if step = '1l' then
next state <=
else
next state <=
end if;

halt;

exe state;

fetch state;

input state;

when output state =>

if step = '"1' then
next state <=
else
next state <=
end 1f;

when halt =>

[34]

fetch _state;

output_state;

next state <= halt;

when others => null;
aend case;
end process:;

C2: process (present state)
begin

fetch <= '0'";

incr <= '0"';

exe <= '0';

inp out <= '0';

outp out <= '07";

case present state is
when fetch state =>
fetch <= '17';

when incr state =>
incr <= '1"';

when exe state =>
exe <= "'1"';

when input state =>
inp out <= 'l';

when output state =>
outp out <= '1";

when others => null;
end case;
end process:
end contrel final;

[35]

datapath_final:

-- Datapath for the Cardiac Computer --
-— datapath final.vhd --

library IEEE;

use IEEE.std logic 1le4.all;

entity datapath final is
port (
clk : in std logic;
fetch : in std logic;
increment : in std logic;
execute : in std_logic;
clear : in std_logic;
mode3 : in std logic;
output : in std logic;
input : in std logic;
data in : in std logic vector (12 downto 0);
acc_out : out std logic vector{i2Z downto 0);
addr out : out std logic vector{7 downto 0);
ir : out std logic vecter({7 downto 0);
pc : out std logic vector(7 downto 0);
debug : out std logic vector(7 downtoc 0);
inp out : ocut std logic;
outp out : out std logic;
mem load : out std logic;
halt : out std_legic
)
end datapath final;

architecture datapath final of datapath final is

component add cardiac is
port
acc_in : in std _logic_vector{l2 downto 0);
data in : in std_logic_vector {12 downto 0};
add out : out std logic_vector{l2 downto 0}
)

end component;

cemponent subtract cardiac is
port
acc in : in std logic_vector (12 downto 0);
data in : in std logic_vector (12 downto 0);
sub out : out std logic_vector(lz downto 0)
)7

end component;

component shift cardiac is
port {

[36]

data in : in std leogic vector(lZ downto 0);
sh code : in std logic _vector{Z downto 0);
sh out : out std logic vector(lZ downto 0)

) ;

end component;
component decode final is

port
op

(

in std _logic vector(3 downto 0};

acc_load : out std logic;

halt

out std lecgic;

mem load : out std logic;

md
ml

neg
jump
inp
outp

)i

out std logic;
out std logic vector(l downto 0);
out std logic;

out std logic;

out std logic;

ocut std logic

end component;

component mux4g is
generic (N:integer :=4);
port (

a
b

4

) s

[OEReRNe]

in std logic vector (N-1 downto 0);
in std logic_vector (N-1 downto 0);
in std logic _vector (N-1 downto 0);
in std logic vector (N-1 downto 0);
in std legic vector (1l downto 0);
out std logic vector (N-1 downto 0)

end component;
component clock pulseZ is

port
inp
cclk
clr

(

in std logic;
in std logic;
in std logic;

cutpl : out std logic;
outpl : out std logic

) ;

end component;
component clock pulse is

port
inp
cclk
clr
outp

)i

(

in std logic;
in std logic;
in std logic;
cut std logic

end component;

[37]

component mux2g is
generic(N:integer :=4);
port {
a : in std logic vector (N-1 downto 0);
b : in std _logic_vector (N-1 downto 0);
s in std_logic;
y : out std logic vector{N-1 downto 0)
)i
end compoenent;
component reg is
generic (N:integer := 8};
port
load : in std logic;
clk : in std logic;
cilr : in std logic;
d : in std leogic vector{N-1 downto 0);
g: out std lecgic vector(N-1 downto 0)
) ;
end component;
component incr pc is
port (
incr : in std logic;
data in : in std logic vector (7 downto G);
data out : out std logic vector(7 downto 0)
) ;
end component;
signal addr mux sel: std logic;
-~ selects addr out
signal acc load exe: std logicy
-—- ACC load pin
signal acc pulse load, acc pulse clk: std logic;
-—- for ACC clock pulseZ
signal ir_pulse lcad, ir pulse clk: std logic:
-~ for IR clock pulseZ2
signal incr pc load, exe pc load, pc_load: std logic;
-— PC load pins
signal incr pulse load: std logic;
-- for Incr circuit
signal acc_load, m0, neg, halt out: std logic;
-- deccde outputs
signal ml: std legic vector(l downto 0);
-- decode output for ALU mux select
signal op code : std logic vector (3 downto 0);
-— op code to decode
signal sh code : std logic vector {2 downto 0);
~-—- sh code for shifting

[38]

signal ir out, pc_data in, incr out: std_legic_vector (7 downto
0);
signal sh out, add out, sub_out, alu_mux_out:
std logic vector (12 downto 0} ;
-—- ALU outpins into mux for ACC
signal ir reg out: std logic_vector(ll downto 0);

-- IR output

signal pc reg out: std logic_vector (7 downto 0);
~-- PC output

signal acc reg out: std logic_vector (12 downto 0);
-— ACC output

signal jump, jmp: std logic;
-- jump selection for PC

begin
halt <= halt_out;

addr _mux_sel <= (m0 and execute) or output or input;

jmp <= jump or (acc_reg out{l2) and neq);
incr pc load <= increment and mode3;

exe pc load <= execute and mode3 and Jmp;

pc load <= halt out or incr_pc_lecad or exe pc_ioad;
—-pc_load <= increment or (execute and jump);

acc_out <= sh out;

acc load exe <= execute and acc_load;

sh code <= (not op_code(3} and op_code(2) and not
op _code(l) and not op_code{0)) & ir out(4) & ir out (0}

ir out <= ir reg_out({7 downto 0)};
op code <= ir reg cut(ll downto 8};

debug <= pc_load & increment & jmp & jump & neg & mode3 &
execute & exe pc load;

ir <= ir out;
pc <= pc_reg out;

Dec: decede_final
port map (

op =>» op_code,
acc_load => acc_load,
halt => halt out,

mem load => mem load,
m0 => m0,

ml => ml,

[39]

neg => neqg,

jump => jump,
inp => inp_out,
outp => outp out
Y i

AddrMux: mux2g
generic map (N => 8)
port map

a =>» pc_reg out,

b => ir out,

> addr _mux_sel,

> addr_out

il

—
il

r

IRClockPulse2: clock pulseZ
port map |

inp =>» fetch,

cclk => clk,

clr => '0"',

cutpl => ir pulse load,
outpl => ir pulse clk

)i

TRRegister: reg

generic map (N => 12)

port map (

load => ir_ pulse_load,

clk => ir pulse clk,

clr => clear,

d => data in(11l downto 0},
g => ir_reg out

);

PCDataMux: muxlg
generic map (N => 8)
port map

a => 1ir out,

b => incr out,

g => increment,

y => pc_data_in

PCRegister: regq

generic map (N => 8)

port map (

load => pc load, --pc pulse load,

[40]

clk => clk, --pc_pulse clk,
clr => clear,

d => pc_data_in,

g => pc_reg out

)i

IncrClockPulse2: clock pulse
port map |

inp => increment,

cclk => c¢lk,

clr => '0°F,

cutp => incr pulse load

1

Incr: incr pc

port map (

incr => incr pulse load,
data in => pc_reg_out,
data out => incr_out

) ;

Add: add cardiac
port map (

acc_in => sh_ out,
data in => data_in,
add _out => add out
)

Sub: subtract cardiac
port map {

acc_in => sh out,
data in => data_in,
sub_ocut => sub ocut

Y

ALUMux: muxdg
generic map (N => 13)
port map
=> sh out,
add out,
=> data in,
sub_ out,
=> mi,
=> alu mux out

(O]
i
v

— N QO
i
v

ACCClockPulseZ: clock pulseZ2

[41]

port map (

inp => acc_lcad exe,
cclk => clk,

clr => '0°7,

ocutpl => acc pulse locad,
outpl => acc_pulse clk
)i

Acct reg

generic map (N => 13)
port map

load => acc pulse load,
clk => acc _pulse clk,
clr => clear,

d => alu_mux out,

g => acc_reg out

) ;

Shift: shift cardiac
port map {

data_in => acc reg_out,
sh code => sh code,

sh out => sh out

)

end datapath final;

[42]

decode_final:

-- deccde the op code for the cardiac computer —--
-— decode final.vhd --

library IEEE;

use IEEE.std logic 1164.all;

entity decode final is
port
op : in std logic vector(3 downto 0};
acc load : out std logic;
halt : out std logic;
mem load : out std logic;
m0 : out std legic;
mi : out std legic vector(l downto 0};
neg : out std _logic;
jump : out std logic;
inp : out std_logic;
outp : out std_logic
)i
end deccde final;
architecture decode final of decode_final is
signal s: std logic vector(9 downto 0}
begin
process (s, op)
begin
case op 1s
when "0000" =>
when "0001" =>
when "0010" =>
when "0011" =>
when "0100" =>
when "0101" =>
when "0110" =>
when "0111" =>
when "1000" =>
when "1001" =>
when others =>
end case;
end process;

<= "0100000000";
<= "0C00010101";
<= "QCC0010011";
<= "0000100000";
<= "00C0010000";
= "1000000000";
<= "QQ00C0lCC1";
<= "Q00Q0CC1C111™;
<= "Q00100CCCCC";
<= "Q001CC0CCO";
<= "0000000000";

0w nhvnn e h «”
A
|

9
)
Jump <= s (7
halt <= s(6
neqg <= s(5)
acc_load <=

[43]

mem_load <= s(3);
ml <= s(2 downto 1);
m) <= s(0};

end decode final;

[44]

incr_bed2:

-~ Increments a 2 digit BCD number --
-= incr becdZ.vhd —-

library IEEE;
use IEEE.std logic_1ll64d.all;
use IEEE.std logic unsigned.all;

entity incr bced2 is
port ¢
data in : in std logic vector (7 downto 0Q);
data out : out std logic vector(7 downto 0)
)i

end incr bcd2;

architecture incr bcd2 of incr bed2 is
component bcd adderd is
port {
a : in std logic vector (3 downtoc 0);
b : in std logic vector (3 downto 0);
¢ in : in std logic;
c_out : out std logic;
s : out std logic vector(3 downto C)
)i

end component;

signal cC_out: std logic;
signal s0, sl: std logic vector(3 downto 0);
signal data: std logic_vector(7 downto 0);
begin

data <= gl & s0;

B4: bcd adderé

port map (

a => data in(3 downto 0),
b => "CCOo1",

¢ in => 10",

c_out => ¢l out,

s => s0

)

B5: bcd adderd

port map
a => data in(7 downto 4),
h o=> "0000",

[45]

¢ _in =>» c0 out,
s => sl

)

process (data)
begin
if data = "00000CCO" then
data out <= "0CO000G1";
else
data out <= data;
end 1%;
end process;

end incr bcdZ;

[46]

incr_pe:

~-— Increment Circuit for the PC --
-- incr pc.vhd ==

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity incr pc is
port {
incr : in std_logic;
data _in : in std_logic_vector (7 downte 0);
data out : out std logic_vector(7 downto 0)
)i '

end incr_pc;

architecture incr pc of incr_pc is

component incr bcd2 is
port
data in : in std_logic_vector (7 downto 0};
data out : out std logic_vector (7 downto 0)
)

end component;

signal data: std logic vector{7 downto C):

begin

IncrementCircuit: incr bced2
port map |

data _in => data in,

data out => data

)i

process {incr, data, data in)
begin
if incr = '1' then
data out <= data;
else
data out <= data_in;
end if;
end process;
end incr_pc;

[47]

mem_addr_reg:

~= Memory Address Register that contains an address from 0 - 99
-— mem_addr reg.vhd --

library IEEE;

use IEEE.std logic 11€4.all;

use IEEE.std logic unsigned.all;

entity mem addr reg is
port |
load0 : in std logic;
loadl : in std logic;
clk : in std logic;
incr : in std logic;
addr in : in std logic vector (7 downto 0);
addr out bcd : out std logic vector(7 downtoc 0);
addr _out : out std logic_vector {6 downtc 0)
)i
end mem_addr_reg;
architecture mem addr reg of mem addr reg is
type mem type 1s array(0 to 1} of std logic vector(3 downto 0);
signal mem array: mem type;
signal addr ocut trimmed: std logic vector (7 downto 0);

begin
process (clk)
begin
if (cik'event and clk = '1') then
if load0 = '"1' then
mem array(0) <= addr in{(3 downto 0};
end if;

1if loadl = '1l' then
mem array(l) <= addr_in(7 downto 4};

end if;
if incr = '1' then
if conv_integer (mem array(0)) >= 9 then
if conv_integer (mem array(l)) >= 9 then
mem array(l) <= "0000";
else
mem_array({l) <= mem_array(l) +
"0001T;
end if;
mem array(0) <= "0000";
else
mem array({0) <= mem array{(0) + "0001";
end if;
end 1f;

[48]

end 1if;
end process;
addr out trimmed <= (mem_array(l) * "1010") + mem_array (0);
addr_out <= addr~out_trimmed(6 downto 0);
addr out bcd <= mem array(l) & mem array(0);
end mem addr reg;

[49]

mem_stackl final:

—— Creates a 100 x 1 bit memcry stack --
~- mem_stackd.vhd -~

library IEEL;
use IEEE.std leogic 1164.all;
use IEEE.std logic unsigned.all;

entity mem stackl final is
port
load: in std logic;
clk : in std logic;
-~clr : in std logic;
addr : in std legic. vector (6 downto 0);
data in : in std logic;
data cut : out std logic
);
end mem_stackl final;

architecture mem stackl final of mem stackl final is
type ram type is array(0 to 127) of std logic:
signal ram array: ram type;
begin
process (clk) --, c¢lr)
begin
if (clk'event and clk = '1'} then
if icad = '1l' then
ram_array(conv_integer(addr})} <= data_in;
end 1f;
end if;
end process;
data out <= ram array{conv_integer (addr));
end mem stackl final;

[50]

mem_stack4 final:

-- Creates a 100 x 4 bits memory stack --
-- mem stackd final.vhd --

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity mem stack4 final is
port (
load: in std logic;
clk : in std logic;
--clr : in std logic:
addr : in std logic vector{6 downto 0};
data _in : in std logic vector (3 downto 0};
data out : out std logic vector(3 downto 0)
) ;

end mem_stackd_final;

architecture mem stack4 final of mem stack4 final is

G}
signal ram array: ram_type;
begin

process(clk) =--, clr)

begin
-— if ¢lr = '1' then
-— ram _array <= (others=> (others=>'0"'));
- els

if (clk'event and c¢lk = '1") then

if load = '1l' then

type ram type is array(0 to 127) of std logic_vector (3 downto

ram_array(conv_integer (addr)) <= data_ in;

end if;
end i1f;
end process;
data out <= ram array{conv_integer (addr))};
end mem stack4_ firal;

[51]

memory_final:

~~ 100 by 1000 memory circuit where it takes an address input
from datapath as well and is muxed depending on the mode--
-- memocry final.vhd --

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity memory final is
port
load0 : in std logic:
loadl : in std logic:
lcad2 : in std_logic;
model : in std logic;
medeZ : in std logic;
inp mode : in std logic;
clk : in std logic;
clr : in std logic;
incr : in std legic;
write mem : in std logic;
data in : in std logic_vector{l2 downto 0);
addr in : in std logic_vector {7 downto 0);
addr_in _datapath : in std_logic_vector (7 downto 0);
addr out : out std logic vector({7 downtc 0);
data_out : out std logic vector (12 downto 0)
)7

end memory final;

architecture memory final of memory final is
component clock pulse is

port |

inp : in std logic;

cclk @ in std logic;

clr : in std logic;

outp : out std logic

)i

end component;

component mem addr reg is
port {
lead0 : in std logic;
loadl : in std logic;
clk : in std legic;
incr : in std legic;
addr_in : in std _logic vector (7 downtc 0};

[52]

addr_out bed : out std logic vector (7 downto 0);
addr out : out std logic vector (6 downto 0}
) :

end component;

component mem stack4 final is
port
load: in std logic;
clk : in std legic;
addr : in std logic vectoer (6 downto 0);
data in : in std logic vector (3 downto 0);
data out : out std_logic_vector (3 downto 0)
) ;

end component;

compenent mem stackl final is
port {
load: in std logic;
clk : in std logic;
addr : in std logic vector (6 downto 0};
data in : in std logic;
data out : out std logic
)i

end component;

component muxZg 1s
generic{N:integer :=4);
port{
a : in std logic vector (N~-1 downto 0);
b : in std logic_vector(N-1 downto 0);
s : in std logic;
y : out std logic vector(N-1 downto 0)
}i

end component;

signal internal addr sel, mem load(_pulse, mem loadl pulse,
mem_ loadC,
mem loadl, mem incr, sign load, sZ load, sl _load, sC_load,
sign out, incr_pulse: std logic;
signal addr, addr datapath, internal addr: std legic_vector
{6 downto 0);
signal digit2 out, digitl out, digit0 out: std logic_vector
{3 downtoc 0);

begin

internal addr sel <= model or modeZ;
mem loadC <= (model and loadl};

[53]

mem loadl <= (medel and loadl);
mem_incr <= modeZ and incr pulse;

sign load <= ((modeZ or inp mode) and load2) or write mem;
s2 load <= sign_load;
51 lcad <= ((modeZ or inp mode} and loadl) or write mem;
s0 load <= ((modeZ oxr inp mode) and loadl) or write_mem;
data out <= sign out & digit2 out & digitl out &

digit0O out;

addr datapath <= {(addr in datapath(7 downtc 4) * "1010") +
addr in datapath(3 downto 0);

InternalAddressMux: mux2g
generic map (N=>7)

port map (

a => addr datapath,

addr,
internal addr sel,
internal addr

o
VoV v

o)
IS]
Y
)

Clock: clock pulse
port map{

inp => incr,

cclk => clk,

clr => ¢lr,

outp => incr pulse

) ;

MemLoadO: clock pulse
port map

inp => mem_ load0,

cclk => clk,

clr => clr,

outp => mem load0 pulse
)i

MemLoadl: clock pulse
port map(

inp => mem loadl,

cclk => clk,

clr => cir,

outp => mem loadl pulse

)i
MemAddrReg: mem addr reg

port map (
loadd => mem loadC pulse,

[54]

lcadl => mem loadl pulse,
clk => clk,

incr => mem incr,

addr _in => addr in,

addr out becd => addr_out,
addr cut => addr

)i

RamStackSign: mem stackl final
port map

load => sign_load,

clk => clk,

addr => internal_addr,

data in => data_in(12),
data_out => sign_out

)

RamStackDigitZ2: mem stack4 final
port map/{

load => s2Z load,

clk => clk,

-—c¢lr => clr,

addr => internal addr,

data in => data_in{1l downto 8),
data out => digitZ out

)i

RamStackDigitl: mem stackd final
port map

load => sli_ load,

clk => clk,

addr => internal addr,

data in => data_in{(7 downto 4},
data out => digitl out

|

RamSTackDigit(: mem stackd final
port map (

load => s0_load,

clk => clk,

addr => internal addr,

data in => data in(3 downto 0},
data out => digit0 out

Vi

end memory final;

£55]

mux_2g:

-— A two to one mux for any size inputs --
-— muxZg.vhd~--

iibrary IEEE;
use IEEE.STD LOGIC 1164.all;

entity mux2g is
generic{N:integer :=4);
port{
a : in std_logic vector{N-1 downto 0);
b : in std logic vector{(N-1 downto 0);
s : in std _logic;
y : out std logic vecter(N-1 downtc 0)
b

end mux2g;

architecture mux2g of mux2g is

begin
pl: process (a, b, =)
begin
if s = "0’ then
y <= a;
alse
y <= b;
end 1%;

end process;

end muxz2g;

[56]

mux_4g:

-— A generic four to one mux for any sized input --
-~ muxdg.vhd--

library IEEE;
use IEEE.STD LOGIC 1164.all;

entity muxdg is
generic(N:integer :=4};
port {
a : in std logic_vector (N-1 downto 0);
b : in std logic vector (N-1 downto 0);
: in std logic_vector (N=1 downto 0);
in std legilc vector (N-1 downto 0);
: in std leogic_vector (1l downto 0);
z : out std legic vector (N-1 downto 0)
)y

end muxdqg;

w0

architecture muxd4g of muxég is

compoenent mux2g
generici{N:integer :=4};
port {
a : in std logic_vector (N-1 downto 0);
b : in std logic vector(N-1 downto 0);
s : in std logic;
y : out std logic vector (N-1 dewnto 0)
¥

end component;
signal v, w: std logic vector{N~1 downto 0);
begin
M1: mux2g generic map (N => N
{fa => a, b => b, s => s(0), => vy);

M2: mux2g generic map (N => N} port map

) port map
Y
)
fa => ¢, b =>d, 8 => s{(0), yv => w);
)
Yy

M3: mux2g generic map (N => N) port map
(a => v, b =>w, 5 =>» s(l}, => z};

end mux4qg;

[57]

reg:

-— A register to hold any sized input -
-- reg.vhd ==

library IEEE;
use IEEE.std logic 1164.all;

entity reqg is
generic (N:integer := 8);
port |
load : in std logic;
clk : in std logic;
clr : in std logic;
d : in std legic vector(N-1 downto 0);
g: out std logic vector(N-1 downto 0)
Vi

end reg;

architecture reg of reg is

begin
precess (clk, clr)
begin
if ¢lr = '1' then
g <= (others => '0");
elsif clk'event and clk = '1' then
if load = '1' then
g <= d;
end if;
end if;
end process;
end reg;

[58]

shift_cardiac:

-~ Does a single right shift, a single left shift, or no shift -

- shiftwcardiac.vhd -—

library IEEE;
use IEEE.std logic 1164.all;

entity shift cardiac is

port {
data_in : in std logic vector (12 downto C);
sh code : in std logic vecter ({2 downto 0;;

sh_out : out std logic vector(l2 downto 0)
)i
end shift cardiac;

architecture shift cardiac of shift cardiac is

component muxdg is

generic (N:integer :=4);
port{
a : in std logic vector{N-1 downto 0);
b in std logic_vector{N-1 downto 0);
C in std logic vector (N-1 downto 0);
d in std_logic vector (N-1 downto 0);
5 in std logic vector ({1l downto 0};
z : out std logic vector (N-1 downto O0)

Vs

end component;

component mux2g is
generic(N:integer := 2);
port | ‘
a : in std logic vector (N-1 downto 0);
b : in std logic_vector(N-1 downto 0);
s : 1in std_logic;
y : out std logic vector(N-1 downtc Q)
)i

end component;

signal shr, shl: std logic vector{l12Z downto 0);
signal sh _sel: std logic vector(l downto Q) ;

begin
shr <= data in(12) & "0000" & data_in(ll downto 8} &
data in(7 downto 4);:

[59]

shl <= data in(12) & data in(7 downto 4) & data_in(3 downto

0) &
"0000";
M1: mux2g
generic map (N => 2)
port map
a =>»> "00",
b => sh code(l downtec 0),
$ => sh code(Z),
y => sh sel
)
M2: muxdg
generic map (N => 13)
port map |{
a => data_in,
b => shr,
c => shl,

d => data in,
s => sh sel,
z => sh out

)

end shift cardiac;

[60]

subtract_cardiac:

-— Subtracts the datapath from the Accumulator --
-— subtract cardiac.vhd --

library IEEE;
use IEEE.std logic 1164.all;

entity subtract cardiac is
port
acc_in : in std_logic_vector (12 downto 0};
data in : in std logic vector (12 downto C});
sub_out : out std logic vector (12 downto 0)
Vi

end subtract cardiac:

architecture subtract cardiac of subtract cardiac is

component add_cardiac is
port {
acc_in : in std logic vector (12 downto 0);
data in : in std logic vector (12 downtc 0);
add out : out std logic vector(lZ downto 0)
)i
end component;
signal data: std legic _vector (1Z downto 0};
begin
data <= (not data in(l2)) & data_ in (1l downto 0);

A3: add cardiac
port map

acc_in => acc_in,
data in => data,
add out => sub out
Y

end subtract cardiac:;

[61]

tens_compliment13:

-—- creates a tens compliment of a signed 3 digit BCD number (13
bits) -
-- tens complimentl3.vhd --

library IEEE;
use IEEE.std logic 1164.all;

entity tens complimentl3 is
port {
a : in std legic vector (12 downto C);
s : out std logic vector(l2 downto 0)
)7

end tens complimentl3;

architecture tens complimenti3 of tens complimenti3 is
component bcd adder34 is

port

a : in std logic vector (12 downto 0};

b : in std logic vector(l2 downto 0);

s : out std logic vector (13 downto 0)

yi

end component;

signal digit2, s2, digitl, sl, digit0, s0: std logic vector
{3 downto);
signal sf: std logic vector (13 downto 0);
signal s out: std logic_vector {12 downto 0);
begin
digit2 <= a(ll downto 8);
digitl <= a(7 downto 4);
digit0 <= a(3 downto 0});

process (digitZz, digitl, digit0, s0, sl1, s2)
begin
case digitZ is
when "0000" => s2 <= "1001";
when "C0GOL"™ => s2 <= "1000";
when "0010"™ => g2 <= "0111";
when "0011" => 52 <= "(0110";
when "0100" => 52 <= "0101";
when "0101" => g2 <= "(0100";
when "0110" => 52 <= "(0011";
when "0111" => g2 <= "0010";
when "1000" => g2 <= "0COL";
when "1001" => g2 <= "0000";

[62]

when others => 52 <= "0000";
end case;
case digitl is
when "0000" => sl <= "1001";
when "0001"™ => sl <= "1000";
when "0010" => sl <= "0111";
when "0011" =>» sl <= "0110";
when "0100" => sl <= "0101";

when "0101" => s1 <= "0100";
when "0110" => sl <= "0011i";
when "0111" => sl <= "0010";
when "1000" => sl <= "0001";

when "1001" => sl <= "0000";
when others => sl <= "0000";

end case;

case digit0 is
when "0000™ => s0 <= "1001";
when "0001" => s0 <= "10G0";
when "0010" => =0 <= "0111";
when "0011" => 50 <= "0110";
when "0100" => s0 <= "0101";
when "0101" => s0 <= "0100";
when "0110" => s0 <= "0011";
when "0111" => s0 <= "0010";
when "1000" => s0 <= "0001";
when "1001" => s0 <= "0000";
when others =>» s0 <= "0000";

end case;

end process;

s out <= a(1l2) & s2 & sl & s0;

Bl: bcd adder34

port map (

a => s_out,

> "0006C0C0000001",
> sf

—w g
il

-
’

g8 <= sf (12 downto 0);
end tens complimentl3;

[63]

x7seghbc:

-- Example 0Z: x7segbc - input cclk should be 190 Hz --
-- xlsegbc.vhd -~
~—~ xTsegb.vhd --

libkrary IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity x7segbc is
port
x : in std logic vector{l5 downto 0);
cclk @ in std logic;
clr : in std logic; ‘
a_to g : out std legic vector({6 downto 0);
an : out std logic vector (3 downto 0};
dp : ocut std logic
)i

end x7segbc;
architecture x7segbc of x7segbc is

signal s : std logic_vector(l downto 0);
signal digit : std logic vector (3 downto 0};
gignal aen : std logic vector(3 downto 0);

begin

dp <= '1'";

aeni{3) <= x{15) or x(14) or x{13) or x(12);

aen(2) <= x(15) or =x{1l4) or x(13) or x{(12) or x{(11) or
x (10} or x{9) or x(8);

aen(l) <= x(15) or =(14) or x(13) or x{(12) or x{(11) or
x(10) or x(9) or x(8) or x(7) or =%(6) or x(5) or x(4});

aen{0) <= "1'; -- digit ¢ always on

-—- Quad 4-to-1 MUX: muxdd
process (s, X)
begin
case g is
when "00" => digit <= x(3 downto G};:
when "01" => digit <= x(7 downto 4);
when "10" => digit <= x{11 downto B};
when others => digit <= x(15 downtc 12);
end case;
end process;

[64]

--// T-segment decoder: hex7seg
process {digit)

begin
case digit is
when X"0" => a to g <= "0000001";
when X"1" => a to g <= "1001111";
when X"2" => a to_g <= "0010010";
when X"3" => a to_g <= "0000110";
when X"4" => a _to_g <= "1001100";
when X"5" => a to g <= "0100100";
when X"6" => a to g <= "0100000";
when X"7" => a to g <= "0C01101";

when X"8" => a tec g <= "0CCCGOC™;
when X"9" => a to g <= "00C0100";
when X"A" => a to g <= "00C01CC0";
when X"B" => a to g <= "11C00CCC";
when X"C" => a to g <= "01106C0C1";
when X"D" => a to g <= "1060010";
when X"E" => a to g <= "01100C0C";
when others => a to g <= "0111000";
end case;
end process;

-~ Digit select: ancode
process (s, aen)
begin
an <= "1111";
if aen(conv_integer(s
an(cenv_integer {
end if;
end process;

Jy = '1'" then
s)) <= '07;

-- 2-bit counter
process (cclilk, clr)

begin
if ¢lr = '1' then
S <: !IOG";
elsif cclk'event and cclk = '1l' then
5 <= g + 1;
end if;

end process;
end x7segbg;

[65]

