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Electrophysiology 
• The study of the body’s electric activity 

▫ Can be small-scale (individual cells) or large-
scale (entire organs) 

 

• Electrophysiology often plays an important role 
in medical diagnostic procedures 

▫ Ex: ECG, EEG, EMG  
 

• Signals often recorded by placing a series of 
electrodes on the surface of a patient’s skin 

▫ Not always a practical approach—long-term 
collection of data may be required 

 



A Possible Solution 
• A subcutaneous (under the skin) recording 

device could remain in place semi-permanently 

▫ Device may be implanted almost anywhere in a 
minor surgical procedure 

 

Schematic of proposed device 

Figure created by Zachary Abzug 



Transcutaneous Recharging 
• Most implanted devices recharged via magnetic 

fields—not feasible for this device 

• Instead, induce high frequency electric field 
using external source and sink electrodes 
 

Figure created by Zachary Abzug 

Transcutaneous recharging using electric fields 



Upholding Medical Standards 
• Problem with recharging via electric fields: 

current passing through tissue can cause 
thermal damage (Joule heating) 

▫ A temperature increase ≤ 2 oC is within 
medical standards 

 

• Previous work: perform finite element analysis 
to investigate expected temperature increase 

 



Project Objective 

 

• Derive a closed-form solution for the anticipated 
temperature increase 

 

▫ Primary motivation: improved understanding 
of physical parameters on temperature 
increase 



The “Extended” Bioheat Equation 

• The heat equation: describes variation of 
temperature in a region as a function of time 
 

• Pennes’ extension to the heat equation: accounts 
for heat transfer due to perfusion (blood flow) 
and metabolic heat production 
 

• Source term: accounts for heating due to power 
dissipation in tissue 
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Power Dissipation 

• Calculate the work done by electromagnetic 
forces on a charge Q moving some infinitesimal 
distance dl: 

 

 

• Make the substitutions                   and 
 

• Rate at which work is done on all charges in a 
volume:  

 

• Therefore,          is the work done on a charge per 
unit volume per unit time  

 



•  Steady-state solution(            ) 
 

•  Ignore perfusion(           ) 
 

•  Ignore metabolic heat production(              )   

Simplifying the Bioheat Equation 

• Must make several simplifications 

• Final equation to solve: 

0 0 0 



A Previous Solution 

• Our method of solving the bioheat equation is 
similar to a solution given by Elwassif et al. [1] 

▫ Begin by relating the source term to the 
gradient of the electric potential 

 



Geometric Considerations 
• Treat electrode as a current-producing sphere in 

an infinite homogeneous and isotropic resistive 
material 

• Second electrode is at infinity (V=0) 

 

r0 

Spherical coordinate system 
(image from Wikipedia) Spherical electrode within infinite medium 



A Solution in Spherical Coordinates 
• Write bioheat equation in spherical coordinates  

▫ Ignore θ and φ dependence due to geometry 

 

 
 

• Must find an expression for the electric potential 
by solving Laplace’s equation 



Solving Laplace’s Equation 
• Laplace’s equation is 

 

▫ Write in spherical coordinates: 

 

▫ Multiply through by r2: 

 

▫ Integrate twice with respect to r: 

 

▫ Since zero potential at infinity, B=0: 

 

 

 



Solving Laplace’s Equation 
• To determine A, consider a point source of 

current in an infinite, homogeneous, isotropic 
medium. 

▫ The current density is: 

 

▫ Since                         , the potential is: 

 

 

 

▫  Compare to  

 

 



Solving the Bioheat Equation 
• Plug solution for potential into bioheat equation: 

 

 

 

 

 

 

 

 

• Make substitutions for clarity: 

 

 

product rule for derivatives take gradient with respect to r 



Solving the Bioheat Equation 
• The result is a second-order, linear, non-

homogeneous differential equation 

 

 

• The general solution to this form of DE is 

complimentary function particular solution 

Determine by solving 
the homogeneous case 

Determine using 
variation of parameters 



The Complimentary Function 
• The homogeneous case is: 

• This is a Cauchy-Euler equation, so the solution 
is of the form y = xm 

• Plug in y’ and y’’ to the homogeneous case and 

solve for m:  

 

 
 

• Since y = xm , the complimentary function is 
given by: 



The Particular Solution 
• To use variation of parameters, rewrite as: 

 
 

• The solution is given by                           , where y1 
and y2 are from the complimentary function and 



The General Solution 
• The general solution is the sum of the 

complimentary function and the particular 
solution: 

 

 

 

 

• Plugging this back into the bioheat equation 
verifies that it is a solution 

 



The General Solution 
• The solution is also valid in terms of units 

 

 

 

 

 

 

 

• Need to determine α and β 

Quantity Unit 

I A 

k A/V*m 

σ V*A/m*K 

α K 

β K*m 



Determining α 
• Assume the tissue is unaffected by heating at an 

infinite distance from the electrode 

▫ As           ,             310.15 K (body temperature) 

    

        

       α= 310.15 K 

0 0 



Determining β 
• To determine a numeric value for β, we will need 

another boundary condition 

▫ Allow heat to exit system (otherwise 
temperature will rise indefinitely) 

▫ Assume heat cannot leave system at r=r0 

 Use Fourier’s Law:  (q=local heat flux) 

 If no heat can flow at r=r0, then: 

 



Determining β 
• The solution for temperature is: 
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A plot of temperature vs. radial distance from electrode (I = 11.7 mA, 
σ = 0.327 A/V*m, k = 0.565 W/m*K, r0 = 0.635 mm). 



Sensitivity to r0 

Dependence of temperature on r0 

• Behavior of solution is highly dependent on r0 
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Future Work 
• What is the physical meaning of the solution? 

• The temperature distribution is 

 

 

or 
 

      (where                   ) 

 

• What does it mean to have two similar terms 
competing? 

 

 



Conclusions 
• Recharging a subcutaneous medical device using 

electric fields can increase tissue temperature 

 

• We show that the steady-state temperature 
distribution is given by 

 

• Future work: investigate how physical 
parameters influence temperature increase 
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Transcutaneous Recharging 
• Most implanted devices recharged via magnetic 

fields—not feasible for this device 

Figure created by Zachary Abzug 

Transcutaneous recharging using magnetic fields 



Figure created by Zachary Abzug 



The Heat Equation 

• The heat equation describes the three-
dimensional variation of temperature in a 
region as a function of time 

• Not a complete model of heat transfer in 
biological situations due to perfusion (blood 
flow)   

ρ = density 
C = specific heat 
k = thermal conductivity 



The Bioheat Equation 
• The rate of heat transfer between blood and 

tissue is proportional to: 
▫ The volumetric perfusion rate 

▫ The difference between the arterial blood 
temperature and the local temperature 

• Also add term (Qmet) to account for metabolic 
heat production 

• The bioheat equation is: 

 

ρb = density of blood 
Cb = specific heat of blood 
Tb = temperature of blood 

ωb = perfusion rate per unit volume of tissue  

T = local tissue temperature 



A Solution in Cylindrical Coordinates 

 

 

 

 

 

 

 
 

▫ Wrote Laplacian in cylindrical coordinates, 
ignoring φ and z dependence due to geometry 

Cylindrical coordinate system 
(image from uic.edu) 

z 



• For our analysis, model head as infinitely wide 
and deep homogeneous resistive material 

• Place one electrode on surface (V=Vapplied) and 
one electrode at infinity (V=0) 

air 
electrode 

head 

A Solution in Cylindrical Coordinates 



• It’s acceptable to ignore φ dependence in our 
situation because of the axial symmetry 

• Problem: we cannot ignore z dependence 

 
 

air 
electrode 

head 

A Solution in Cylindrical Coordinates 
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Determining β – Approach #1 
• Want to know how the temperature behaves at 

the electrode’s surface (r=r0) 

▫ Requires knowing I, σ, k, r0, and T0 (the 
temperature at the electrode’s surface) 

▫ Choose representative values for I, σ, k, and r0 

▫ Parameterize β  based on selected values T0 

 

• Solve for β at r0: 

 

• The solution for temperature:  



Determining β – Approach #1 
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A plot of temperature vs. radial distance from electrode (I = 11.7 mA, 
σ = 0.327 A/V*m, k = 0.565 W/m*K, r0 = 0.635 mm). 



Determining β – Approach #1 
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A plot of temperature vs. radial distance from electrode (I = 11.7 mA, 
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A plot of comparing the contribution of the β/r and c/2r2 terms 

• If β is a smaller value, we see an initial peak in 
temperature 

• Remember solution is of the form: 
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A plot of comparing the contribution of the β/r and c/2r2 terms 

• Would like to account for the peak in 
temperature 

• Remember solution is of the form: 


