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Oscillations of a
Water Balloon

Background

To model the waves which

form on the surface of a

water balloon impinging on a

surface

m Look at acoustic (pressure)
waves created within the
water balloon

m Look at waves formed
from deformation of the
balloon surface

Figure : Waves formed on a water
balloon surface



Oscillations of a
Water Balloon

Previous approach looked at
an acoustic driving force
driving oscillations on a
membrane

Background

m This is mathematically
complicated: two coupled
PDEs (the acoustic pressure
wave, and the wave equation
on the surface)

m Better approach: try
modelling the surface force as
the surface tension of a
non-wetting droplet

Figure : A travelling Gaussian isobar
impinging from below a membrane

m This is governed by the
Young-Laplace Equation



Brief Review

Oscillations of a
Water Balloon

Fluid mechanics: describe the velocity of “elements” of the fluid, d

Background
If irrotational flow: V x i = 0, therefore 4 = Vo

|
1) is called the velocity potential and it satisfies Laplace’'s Equation

V2 =0

Goal: Solve the Laplace equation for the a droplet.

m Velocity potential of fluid at surface of balloon will give velocity
of balloon surface

m Need a boundary condition to solve the Laplace Equation



Young-Laplace Equation

sl The Young-Laplace Equation describes the pressure difference at the
surface between two fluid media:

Ap =~Q

Young-Laplace
Ean

m Ap = p; — p> where p; is
pressure in medium 1 and p;
is pressure in medium 2

m 7 is the surface tension (units
J/m? or N/m)

m Q is the the curvature
(1/Ry +1/R») where Ry and
R, are the radii of curvature
of the surface in two Figure : A fluid-fluid interface

orthogonal directions between water and air
(v = 72mN/m)

Image Source: Wikipedia under Creative Commons
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A Slightly Deformed Sphere

Oscillations of a
Water Balloon

Need to calculate the curvature of a sphere that is slightly deformed

Deriving 2 Consider radius of slightly
Boundary

Condition deformed sphere to be

m R is the original radius

®  is a small deviation from K Figure : Near-sphere, with slight

changes in radius ¢



Oscillations of a
Water Balloon

Deriving a
Boundary
Condition

Can be calculated by equating the infinitesimal change in the surface

area 1 1
5A‘//5<(R1+R2) n

0¢ — small change in radius.
Alternatively, calculating the surface area of the deformed sphere:

_ //(R + OV + V2roCdA

which for small change ¢ becomes

12 1 0 (. o
A= //[R_R2_ <5|n95¢2+sin080(s 989))}5@'4

equating the integrands we get...




Surface Pressure and Fluid Pressure

Oscillations of a

Water Balloon Young-Laplace Equation becomes

2 2 1 /1 9. o 1 9%
P = Pr=pair 7[R R? R? (sm@&‘) (sm680> +sin295¢2
Deriving a
Boundary
Condition m P, is constant, ambient

B pr = —P%lf
At the surface 9¢/0t = 0 /0r. Differentiate the above w.r.t. time
and substitute:

The boundary condition

Py Ny [0 (1 0 [ o 1 9%
Por R [2E+ ar (7@ (S'“%) +_sin208752>] -0



Contact Pressure

Oscillations of a
Water Balloon

The pressure on the surface isn't

Deriving s Pair at every point of the sphere.

Boundary At the bottom there is a Dirac
delta pressure

Pr=6(r=R,0=m¢=0) A/Lr':}'»tely
all area
this changes the boundary
condition equation (adds an extra
term)

Figure : A sphere droplet resting on
a plane
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Solution of Laplace's Equation

Oscillations of a
Water Balloon

Look for a solution

W = exp(—iwt)f(r, 0, ¢)

SO

Computing the
solutions and

eenreauencies V) =0
Vz(exp(—iwt)f(r, 0,9)) =
exp(—iwt)V2f(r,0,$) =

V2f(r,0,¢) =0

so f must solve Laplace’s Equation.
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Spherical Harmonics

Oscillations of a
Water Balloon

Well known solution to Laplace’s

6 8. Equation in spherical coordinates:
Co‘mput'\ng ;He " t .* " f(r7 97 (b) = rl \/l,m(97 (b)
solutions an
eigenfrequencies “ . i

‘. Also, Y; , are eigenfunctions of

the Laplacian:

Image Source: Wikipedia under Creative Commons
. . . 2
Figure : The first 4 sets of spherical VYim=—=I(I+1)Yim
harmonics
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Plugging in our solution

Oscillations of a L.
Water Balloon The boundary condition

Py vy [0 01 0 (. 0 18%_
Pﬁ‘ﬁ[ﬁ*@(sm%(“"% tanaos )| =0

Computing the .
solutions and with

eigenfrequencies

b = exp(—iwt)r'Yim(0, ¢)

reduces to
> Y =1)(I+2)
w, = —3
pR

or, when the expansion of the contact force is included

>y IU=1)(+2)

w; =
' PR3 14+ /2T T 1) /A
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Summary

Oscillations of a
Water Balloon

m Surface effects should be treated as surface tensions, to avoid
two coupled PDEs

m Young-Laplace equation governs pressure differences caused by
surface tension

Closing Remarks

m The Y-L equation can be used to get a boundary condition of
the Laplace equation for fluid velocity potential
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Conclusions

Oscillations of a
Water Balloon

There are some problems with this model

m Applied pressure is not just at a point, but grows with time
m Difficult to determine “surface tension” of a balloon — wouldn't
expect this to be equal to the elastic tension

m This is theory is for small droplets for which gravity is negligible
to capillary action

Closing Remarks

However, this my best attempt yet

m Neatly ties together the surface term and the internal velocity
field

m Reduces to the easily solved Laplace equation, for the velocity
potential
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Future Work

Oscillations of a
Water Balloon

m Account for gravity waves in the water balloon

m Treat contact force as an expanding area as a function of time,
rather than point

Closing Remarks

m Compare measured values to predicted
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