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My Goal

To model the waves which
form on the surface of a
water balloon impinging on a
surface

Look at acoustic (pressure)
waves created within the
water balloon
Look at waves formed
from deformation of the
balloon surface

Figure : Waves formed on a water
balloon surface
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Figure : A travelling Gaussian isobar
impinging from below a membrane

Previous approach looked at
an acoustic driving force
driving oscillations on a
membrane

This is mathematically
complicated: two coupled
PDEs (the acoustic pressure
wave, and the wave equation
on the surface)

Better approach: try
modelling the surface force as
the surface tension of a
non-wetting droplet

This is governed by the
Young-Laplace Equation
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Brief Review

Fluid mechanics: describe the velocity of “elements” of the fluid, ~u

If irrotational flow: ∇× ~u = 0, therefore ~u = ∇ψ

ψ is called the velocity potential and it satisfies Laplace’s Equation

∇2ψ = 0

Goal: Solve the Laplace equation for the a droplet.

Velocity potential of fluid at surface of balloon will give velocity
of balloon surface

Need a boundary condition to solve the Laplace Equation
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Young-Laplace Equation

The Young-Laplace Equation describes the pressure difference at the
surface between two fluid media:

∆p = γΩ

∆p = p1 − p2 where p1 is
pressure in medium 1 and p2
is pressure in medium 2

γ is the surface tension (units
J/m2 or N/m)

Ω is the the curvature
(1/R1 + 1/R2) where R1 and
R2 are the radii of curvature
of the surface in two
orthogonal directions

Image Source: Wikipedia under Creative Commons

Figure : A fluid-fluid interface
between water and air
(γ ≈ 72mN/m)
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A Slightly Deformed Sphere

Need to calculate the curvature of a sphere that is slightly deformed

Consider radius of slightly
deformed sphere to be

r(θ, φ) = R + ζ(θ, φ)

R is the original radius

ζ is a small deviation from R

R

ζ

Figure : Near-sphere, with slight
changes in radius ζ
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What is 1
R1

+ 1
R2
?

Can be calculated by equating the infinitesimal change in the surface
area

δA =

∫∫
δζ

(
1

R1
+

1

R2

)
dA

δζ – small change in radius.
Alternatively, calculating the surface area of the deformed sphere:

A =

∫∫
(R + ζ)

√
1 +∇2rδζdA

which for small change δζ becomes

δA =

∫∫ [
2

R
− 2ζ

R2
− 1

R2

(
1

sin2 θ

∂2ζ

∂φ2
+

1

sin θ

∂

∂θ

(
sin θ

∂ζ

∂θ

))]
δζdA

equating the integrands we get...
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Surface Pressure and Fluid Pressure

Young-Laplace Equation becomes

∆p = pf−pair = γ

[
2

R
− 2ζ

R2
− 1

R2

(
1

sin θ

∂

∂θ

(
sin θ

∂ζ

∂θ

)
+

1

sin2 θ

∂2ζ

∂φ2

)]

pair is constant, ambient

pf = −ρ∂ψ∂t
At the surface ∂ζ/∂t = ∂ψ/∂r . Differentiate the above w.r.t. time
and substitute:

The boundary condition

ρ
∂2ψ

∂t2
− γ

R2

[
2
∂ψ

∂r
+

∂

∂r

(
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2

)]
= 0
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Contact Pressure

The pressure on the surface isn’t
pair at every point of the sphere.
At the bottom there is a Dirac
delta pressure

Pf = δ(r = R, θ = π, φ = 0)

this changes the boundary
condition equation (adds an extra
term)

infinitely
small area

Figure : A sphere droplet resting on
a plane
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Solution of Laplace’s Equation

Look for a solution

ψ = exp(−iωt)f (r , θ, φ)

so

∇2ψ = 0

∇2(exp(−iωt)f (r , θ, φ)) =

exp(−iωt)∇2f (r , θ, φ) =

∇2f (r , θ, φ) = 0

so f must solve Laplace’s Equation.
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Spherical Harmonics

Image Source: Wikipedia under Creative Commons

Figure : The first 4 sets of spherical
harmonics

Well known solution to Laplace’s
Equation in spherical coordinates:

f (r , θ, φ) = r lYl,m(θ, φ)

Also, Yl,m are eigenfunctions of
the Laplacian:

∇2Yl,m = −l(l + 1)Yl,m
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Plugging in our solution

The boundary condition

ρ
∂2ψ

∂t2
− γ

R2

[
2
∂ψ

∂r
+

∂

∂r

(
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2

)]
= 0

with
ψ = exp(−iωt)r lYl,m(θ, φ)

reduces to

ω2
l =

γl(l − 1)(l + 2)

ρR3

or, when the expansion of the contact force is included

ω2
l =

γ

ρR3

l(l − 1)(l + 2)

1 +
√

(2l + 1)/4π
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Summary

Surface effects should be treated as surface tensions, to avoid
two coupled PDEs

Young-Laplace equation governs pressure differences caused by
surface tension

The Y-L equation can be used to get a boundary condition of
the Laplace equation for fluid velocity potential
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Conclusions

There are some problems with this model

Applied pressure is not just at a point, but grows with time

Difficult to determine “surface tension” of a balloon – wouldn’t
expect this to be equal to the elastic tension

This is theory is for small droplets for which gravity is negligible
to capillary action

However, this my best attempt yet

Neatly ties together the surface term and the internal velocity
field

Reduces to the easily solved Laplace equation, for the velocity
potential
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Future Work

Account for gravity waves in the water balloon

Treat contact force as an expanding area as a function of time,
rather than point

Compare measured values to predicted
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